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Pricing American Options

under the Constant Elasticity of Variance Model

and subject to Bankruptcy

Abstract

This paper proposes an alternative characterization of the early exercise premium that is

valid for any Markovian and diffusion underlying price process as well as for any parame-

terization of the exercise boundary. This new representation is shown to provide the best

pricing alternative available in the literature for medium- and long-term American option

contracts, under the Constant Elasticity of Variance model. Moreover, the proposed pricing

methodology is also extended easily to the valuation of American options on defaultable

equity, and possesses appropriate asymptotic properties.



I. Introduction

This paper proposes a new analytical approximation for the American option value that

can be applied under any Markovian and diffusion underlying asset price process. In con-

trast with the previous literature, the proposed characterization of the American option can

accommodate the risk of default attached to the underlying equity, and is shown to con-

verge to the exact perpetual solution, being therefore extremely accurate, even for long-term

contracts.

The absence of an exact and closed-form pricing solution for the American put (or call, but

on a dividend-paying asset) stems from the fact that the option price and the early exercise

boundary must be determined simultaneously as the solution of the same free boundary

problem set up by McKean (1965). Consequently, the vast literature on this subject, which is

reviewed for instance in Barone-Adesi (2005), has proposed only numerical solution methods

and analytical approximations.

The numerical methods include the finite difference schemes introduced by Brennan and

Schwartz (1977), and the binomial model of Cox, Ross, and Rubinstein (1979). These

methods are both simple and convergent, but they are also too time-consuming and do not

provide the comparative statics attached to an analytical solution.

One of the first analytical approximations is due to Barone-Adesi andWhaley (1987), who

use the quadratic method of MacMillan (1986). Despite its high efficiency and the accuracy

improvements brought by subsequent extensions (see for example, Ju and Zhong (1999)),

this method is not convergent. Johnson (1983) and Broadie and Detemple (1996) provide

lower and upper bounds for American options, which are based on regression coefficients

that are estimated through a time-demanding calibration to a large set of options contracts.

As argued in Ju ((1998), p. 642), this econometric approach is not convergent and can

generate less accurate hedging ratios, because the regression coefficients are optimized only

for pricing purposes. More recently, Sullivan (2000) approximates the option value function

through Chebyshev polynomials and employs a Gaussian quadrature integration scheme at

each discrete exercise date. Although the speed and accuracy of the proposed numerical

1



approximation can be enhanced via Richardson extrapolation, its convergence properties are

still unknown.

Geske and Johnson (1984) approximate the American option price through an infinite

series of multivariate normal distribution functions. Although convergence can be insured

by adding more terms, only the first few terms are considered, and a Richardson extrapo-

lation scheme is employed in order to reduce the computational burden.1 Another fast and

accurate convergent method is the randomization approach of Carr (1998), which also uses

Richardson extrapolation. It must be noted, however, that one of the main disadvantages of

extrapolation schemes is the indetermination of the sign for the approximation error.

Kim (1990), Jacka (1991), Carr, Jarrow, and Myneni (1992), and Jamshidian (1992) pro-

posed the so-called “integral representation method” to describe the early exercise premium.

However, the numerical efficiency of this approach depends on the specification adopted for

the early exercise boundary. For instance, Ju (1998) derives fast and accurate approximate

solutions based on a multipiece exponential representation of the early exercise boundary.

All the studies mentioned are based on the Black and Scholes (1973) model, and most of

them differ only in the specification adopted for the exercise boundary. Kim and Yu (1996)

and Detemple and Tian (2002) constitute two notable exceptions: they extend the “integral

representation method” to alternative diffusion processes. However, and in opposition to

the standard geometric Brownian motion case, such an extension does not offer a closed-

form solution for the integral equation characterizing the early exercise premium, which

undermines the computational efficiency of this approach.

Based on the optimal stopping approach initiated by Bensoussan (1984) and Karatzas

(1988), this paper derives an alternative characterization of the American option price that is

valid for any continuous representation of the exercise boundary and for any Markovian (and

diffusion) price process describing the dynamics of the underlying asset price. The proposed

characterization possesses at least three advantages over the extended integral representation

1Chung and Shackleton (2007) generalize the Geske-Johnson method through a two-point scheme based

not only on the inter-exercise time dimension, but also on the time to maturity of the option contract.
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of Kim and Yu ((1996), equations 10 or 13): 1) it converges to the perpetual American

option price as the option maturity tends to infinity; 2) its accuracy does not deteriorate

as the option maturity is lengthened; and 3) it can be adapted easily to the context of

defaultable stock options pricing models. Although knowledge of the first passage time

density of the underlying price process to the exercise boundary is required by the proposed

pricing solution, it is shown that such optimal stopping time density can be recovered easily

from the transition density function. Hence, the proposed characterization of the American

option price requires only an efficient valuation formula for its European counterpart, as well

as knowledge of the underlying asset price transition density function.

To exemplify the proposed pricing methodology, several parameterizations of the early

exercise boundary are tested under the usual geometric Brownian motion assumption and

the Constant Elasticity of Variance (CEV) model. Special attention is devoted to this latter

framework since it is consistent with two well known facts that have found empirical support

in the literature: the existence of a negative correlation between stock returns and realized

stock volatility (leverage effect), as documented, for instance, in Bekaert and Wu (2000); and

the inverse relation between the implied volatility and the strike price of an option contract

(implied volatility skew), which is observed, for example, by Dennis and Mayhew (2002).

Although the pricing of European options under the CEV process has become well es-

tablished since the seminal work of Cox (1975), the same cannot be said about the valuation

of American options. As noted by Nelson and Ramaswamy ((1990), p. 418), the simple

binomial processes approximation proposed by these authors becomes inaccurate as option

maturity is increased. Alternatively, and as shown in Section VI, the integral approach sug-

gested by Kim and Yu ((1996), subsection 3.4) and Detemple and Tian ((2002), Proposition

3) is less efficient than the proposed pricing methodology, unless such recursive scheme is

accelerated through Richardson extrapolation, in which case its accuracy may deteriorate

for medium- and long-term options. This paper is intended to fill this gap in the litera-

ture. Additionally, the optimal stopping approach presented in this paper is also adapted

to the context of the jump to default extended CEV model (JDCEV) proposed by Carr and

Linetsky (2006). This extension of the literature provides analytical pricing solutions for
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American options on defaultable equity, which are consistent with both the aforementioned

leverage effect, and the positive relationship between default indicators and equity volatility

that is documented, for instance, by Campbell and Taksler (2003).

This paper proceeds as follows. Based on the optimal stopping approach, Section II sepa-

rates the American option into a non-deferrable rebate and a European down-and-out option.

In Section III, such representation is shown to be equivalent to the usual decomposition be-

tween a European option and an early exercise premium. A new analytical characterization

is offered for the early exercise premium, and its asymptotic properties are tested. Section

IV provides an efficient algorithm to recover the first hitting time density of the underlying

price process, which allows the comparison, in Section VI, of the different specifications of the

early exercise boundary discussed in Section V. Section VII extends the new representation

of the early exercise premium to the JDCEV model, and Section VIII concludes.

II. Model Setup

The valuation of American options will be first explored in the context of a stochastic in-

tertemporal economy with continuous trading on the time-interval [t0, T ], for some fixed

time T > t0, where uncertainty is represented by a complete probability space (Ω,F ,Q).

Throughout the paper, Q will denote the martingale probability measure obtained when the

numéraire of the economy under analysis is taken to be a money market account Bt, whose

dynamics are governed by the following ordinary differential equation:

(1) dBt = rBtdt,

where r denotes the riskless interest rate, which is assumed to be constant.

Although the alternative representation of the early exercise premium that will be pro-

posed in Proposition 1 requires only that the underlying asset price process St be aMarkovian

diffusion, the subsequent empirical analysis will be based on the following one-dimensional

diffusion process:

(2)
dSt
St

= (r − q) dt+ σ (t, S) dWQ
t ,
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where q represents the dividend yield for the asset price, σ (t, S) corresponds to the instan-

taneous volatility (per unit of time) of asset returns and WQ
t ∈ R is a standard Brownian

motion, initialized at zero and generating the augmented, right continuous, and complete

filtration F = {Ft : t ≥ t0}. Nevertheless, equation (2) encompasses several well known op-

tion pricing models as special cases: for example, it corresponds to the geometric Brownian

motion if σ (t, S) = σ is a constant; and it yields the CEV process when

(3) σ (t, S) = δS
β
2
−1

t ,

for δ, β ∈ R.2

Hereafter, the analysis will focus on the valuation of an American option on the asset

price S, with strike price K, and with maturity date T , whose time-t (≤ T ) value will be

denoted by Vt (S,K, T ;φ), where φ = −1 for an American call or φ = 1 for an American put.

Since the American option can be exercised at any time during its life, it is well known–see,

for example, Karatzas ((1988), Theorem 5.4)–that its price can be represented by the Snell

envelope:

(4) Vt0 (S,K, T ;φ) = sup
τ∈T

EQ
©
e−r[(T∧τ)−t0] (φK − φST∧τ)

+
¯̄
Ft0

ª
,

where T is the set of all stopping times for the filtration F generated by the underlying price

process and taking values in [t0,∞].3

Since the underlying asset price is a diffusion and both interest rates and dividend yields

are assumed to be deterministic, for each time t ∈ [t0, T ] there exists a critical asset price Et

below (above) which the American put (call) price equals its intrinsic value and, therefore,

early exercise should occur–see, for instance, Carr, Jarrow, and Myneni ((1992), equations

1.2 and 1.3). Consequently, the optimal policy should be to exercise the American option

2The underlying asset can be thought of as a stock, a stock index, an exchange rate, or a financial futures

contract, so long as the parameter q is understood as, respectively, a dividend yield, an average dividend

yield, the foreign default-free interest rate, or the domestic risk-free interest rate.
3EQ (X| Ft) denotes the expected value of the random variable X, conditional on Ft, and computed

under the equivalent martingale measure Q. Similarly, Q (ω| Ft) will represent the probability of event ω,
conditional on Ft, and computed under the probability measure Q.
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when the underlying asset price first touches its critical level. Representing the first passage

time of the underlying asset price to its moving boundary by

(5) τ e := inf {t > t0 : St = Et}

and considering that the American option is still alive at the valuation date (i.e., φSt0 >

φEt0), equation (4) can then be restated as:

Vt0 (S,K, T ;φ) = EQ
©
e−r[(T∧τe)−t0] (φK − φST∧τe)

+
¯̄
Ft0

ª
= EQ

£
e−r(τe−t0) (φK − φEτe) 11{τe<T}

¯̄
Ft0

¤
(6)

+e−r(T−t0)EQ
£
(φK − φST )

+ 11{τe≥T}
¯̄
Ft0

¤
,

where the first line of equation (6) follows from equation (5), and 11{A} denotes the indicator

function of the set A. Note that K ≥ Eτe for the American put, because the exercise

boundary is limited from above by min
³
K, r

q
K
´
–see, for instance, Huang, Subrahmanyam,

and Yu ((1996), footnote 5). For the American call, K ≤ Eτe because the early exercise

boundary is limited from below by max
³
K, r

q
K
´
–see, for example, Kim and Yu ((1996),

p. 67).

For φ = 1, equation (6) is equivalent to Kim and Yu ((1996), eq. 7) and decomposes

the American put into two components. The first one corresponds to the present value

of a non-deferrable (and, in general, also non-constant) rebate (K −Eτe), payable at the

optimal stopping time τ e. The second component is simply the time-t0 price of a European

down-and-out put on the asset S, with strike price K, maturity date at time T , and (time-

dependent) barrier levels {Et, t0 ≤ t ≤ T}. Assuming a convenient parametric specification

for the barrier function Et, it is possible to convert equation (6) into a closed-form solution.

Such an approach was pursued, for instance, by Ingersoll (1998) using both constant and

exponential specifications, and by Sbuelz (2004), also under a constant barrier formulation.

Unfortunately, the time path {Et, t0 ≤ t ≤ T} of critical asset prices, which is called the

exercise boundary, is not known ex ante and therefore the assumption of a specific parametric

form for the barrier function simply transforms equation (6) into a lower bound for the true

American put option value.
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III. The Early Exercise Premium

Similarly to Kim (1990), Jacka (1991), and Carr, Jarrow, and Myneni (1992), the American

option price can be divided into two components: the corresponding European option price

and an early exercise premium. For this purpose, and because

(7) 11{τe≥T} = 1− 11{τe<T},

equation (6) can be rewritten as:

Vt0 (S,K, T ;φ) = EQ
£
e−r(τe−t0) (φK − φEτe) 11{τe<T}

¯̄
Ft0

¤
+e−r(T−t0)EQ

£
(φK − φST )

+
¯̄
Ft0

¤
−e−r(T−t0)EQ

£
(φK − φST )

+ 11{τe<T}
¯̄
Ft0

¤
.

And, since

(8) e−r(T−t0)EQ
£
(φK − φST )

+
¯̄
Ft0

¤
:= vt0 (S,K, T ;φ)

can be understood (under a deterministic interest rate setting) as the time-t0 price of the

corresponding European option (with technical features identical to those of the American

contract under analysis), then

Vt0 (S,K, T ;φ) = vt0 (S,K, T ;φ)(9)

+EQ
£
e−r(τe−t0) (φK − φEτe) 11{τe<T}

¯̄
Ft0

¤
−e−r(T−t0)EQ

£
(φK − φST )

+ 11{τe<T}
¯̄
Ft0

¤
.

The last two terms on the right-hand side of equation (9) correspond to the early exercise

premium, for which an analytical solution will be proposed in the next proposition.

A. An Alternative Characterization

The proposition presented below provides a new characterization for the early exercise pre-

mium.
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Proposition 1 Assuming that the underlying asset price St follows a Markovian diffusion

process and that the interest rate r is constant, the time-t0 value of an American option

Vt0 (S,K, T ;φ) on the asset price S, with strike price K, and with maturity date T can

be decomposed into the corresponding European option price vt0 (S,K, T ;φ) and the early

exercise premium EEPt0 (S,K, T ;φ), i.e.,

(10) Vt0 (S,K, T ;φ) = vt0 (S,K, T ;φ) +EEPt0 (S,K, T ;φ) ,

with

(11) EEPt0 (S,K, T ;φ) :=

Z T

t0

e−r(u−t0) [(φK − φEu)− vu (E,K, T ;φ)]Q (τ e ∈ du| Ft0) ,

where Q (τ e ∈ du| Ft0) represents the probability density function of the first passage time τ e,

as defined by equation (5), φ = −1 for an American call and φ = 1 for an American put.

Proof. Noting that the only random variable contained in the second term on the right-hand

side of equation (9) is the first passage time, then

(12) EQ
£
e−r(τe−t0) (φK − φEτe) 11{τe<T}

¯̄
Ft0

¤
=

Z T

t0

e−r(u−t0) (φK − φEu)Q (τ e ∈ du| Ft0) .

Concerning the third term on the right-hand side of equation (9), it is necessary to

consider the joint density of the two random variables involved: the first passage time τ e

and the terminal asset price ST . Hence,

(13) EQ
£
(φK − φST )

+ 11{τe<T}
¯̄
Ft0

¤
=

Z
R
(φK − φS)+Q (ST ∈ dS, τ e < T | Ft0) ,

where the integration can be restricted to the domain R+ if, for example, the geometric

Brownian motion assumption is imposed. Because the underlying asset price is assumed to

be a Markov process, the joint density contained in equation (13) is simply the convolution

between the density of the first passage time τ e and the transition probability density function

of the terminal asset price ST :

(14) Q (ST ∈ dS, τ e < T | Ft0) =

Z T

t0

Q (ST ∈ dS|Su = Eu)Q (τ e ∈ du| Ft0) .

8



Therefore, combining equations (13) and (14),

EQ
£
(φK − φST )

+ 11{τe<T}
¯̄
Ft0

¤
=

Z T

t0

·Z
R
(φK − φS)+Q (ST ∈ dS|Su = Eu)

¸
Q (τ e ∈ du| Ft0)

=

Z T

t0

EQ
£
(φK − φST )

+
¯̄
Su = Eu

¤
Q (τ e ∈ du| Ft0) .(15)

Moreover, considering equation (8), the expectation contained in the right-hand side of

equation (15) can be expressed in terms of a European option price:

(16) EQ
£
(φK − φST )

+ 11{τe<T}
¯̄
Ft0

¤
=

Z T

t0

er(T−u)vu (E,K, T ;φ)Q (τ e ∈ du| Ft0) .

Finally, combining equations (9), (12) and (16), the early exercise representation (11)

follows.

Under the usual geometric Brownian motion assumption, equation (11) yields a closed-

form solution to the early exercise premium (modulo to the specification of the first passage

time density), because the term vu (E,K, T ;φ) can be computed using the Merton (1973)

formulae. The same reasoning applies to the CEV model since, in this case, European

option prices can be computed through the analytical solutions provided by Cox (1975) or

Schroder (1989). Note, however, that the proof of Proposition 1 relies only on the much

weaker assumption of a Markovian and diffusive asset price. That is, the early exercise

representation (11) is still valid for other asset price processes beyond the general class

represented by the stochastic differential equation (2).

The representation offered by Proposition 1 is also amenable to an intuitive interpreta-

tion. Since the value-matching condition implies that (φK − φEu) = Vu (E,K, T ;φ), then

equation (11) can be rewritten as

EEPt0 (S,K, T ;φ)

=

Z T

t0

e−r(u−t0) [Vu (E,K, T ;φ)− vu (E,K, T ;φ)]Q (τ e ∈ du| Ft0) .
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Using equation (10), today’s early exercise premium can now be easily understood as the

discounted expectation of the early exercise premium stopped at the first passage time:4

(17) EEPt0 (S,K, T ;φ) = EQ
£
e−r(τe−t0)EEPτe (E,K, T ;φ) 11{τe<T}

¯̄
Ft0

¤
.

That is, the discounted and stopped early exercise premium is, as expected, a martingale

under measure Q.5

Such an interpretation is substantially different from the one implicit in the characteri-

zation of the American option already offered by Kim (1990), Jacka (1991), Carr, Jarrow,

and Myneni (1992), Kim and Yu (1996), and Detemple and Tian (2002). For all these au-

thors, the early exercise premium corresponds to the compensation that the option holder

would require (in the stopping region) in order to postpone exercise until the maturity date.

Under the geometric Brownian motion assumption, and for some early exercise boundary

specifications–see, for example, Ju (1998)–it is possible to obtain closed-form solutions

for such early exercise representation. However, for more general underlying diffusion price

processes, as the ones proposed by Kim and Yu (1996), and Detemple and Tian (2002), it

is necessary to solve numerically and recursively a set of value-matching implicit integral

equations, which can be too time-consuming for practical purposes. To improve efficiency,

Huang, Subrahmanyam, and Yu (1996) calculate only option values based on a few points

on an approximation to the exercise boundary, and then use Richardson extrapolation. Such

accelerated recursive scheme is very fast but not very accurate, especially for medium- and

long-term options–see, for example, Ju ((1998), Tables 1 and 2).

Alternatively, the new characterization offered by Proposition 1 can be efficiently applied

for any early exercise boundary specification, and under any Markovian (and diffusion)

4It is well known that the discounted price process of an American option is a supermartingale under the

risk-neutral measure. Nevertheless, such relative price process behaves as a martingale during any period

of time in which it is not optimal to exercise the option. Therefore, the same result obtains until the first

passage time to the exercise boundary.
5Alternatively and as suggested by an anonymous referee, the right-hand-side of equation (11) is simply

the expected value of the cash flow that arises from liquidating (at the first passage time to the exercise

boundary) a static portfolio that includes a long position on an American option and a short position on the

corresponding European contract.
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underlying price process, which constitutes an innovation with respect to the representations

of the early exercise premium already offered in the literature.

B. Asymptotic Properties

Before implementing Proposition 1 and in order to investigate its limits, the asymptotic

properties of the early exercise representation (11) are first explored.

Proposition 2 Under the assumptions of Proposition 1, the early exercise premium and the

American option value satisfy the following boundary conditions for t ≤ T :

(18) lim
r↓0

EEPt (S,K, T ; 1) = 0,

(19) VT (S,K, T ;φ) = (φK − φST )
+ ,

(20) lim
S↑∞

Vt (S,K, T ; 1) = 0,

(21) lim
S↓0

Vt (S,K, T ;−1) = 0,

and

(22) lim
S→Et

Vt (S,K, T ;φ) = (φK − φEt) ,

where φ = −1 for an American call or φ = 1 for an American put.

Proof. See Appendix A.

Once the general diffusion process (2) is adopted, the usual parabolic partial differential

equation follows for the price of the American option.

Proposition 3 Under the diffusion process (2), the American option value function given

by Proposition 1 satisfies, for φSt > φEt and t ≤ T , the partial differential equation

(23) LVt (S,K, T ;φ) = 0,
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where L is the parabolic operator

(24) L := σ (t, S)2 S2

2

∂2

∂S2
+ (r − q)S

∂

∂S
− r +

∂

∂t
,

φ = −1 for an American call and φ = 1 for an American put.

Proof. See Appendix B.

The relevance of Propositions 2 and 3 emerges from the fact that the American option

price is, under the stochastic differential equation (2), the unique solution of the initial value

problem represented by the partial differential equation (23) and by the boundary conditions

(19) through (22).

Next proposition shows that the American option representation contained in Proposition

1 converges to the appropriate perpetual limit. This result contrasts with the characterization

offered by Carr, Jarrow, and Myneni (1992) or Kim and Yu (1996), and can be relevant for

the pricing of long-term option contracts. Explicit pricing solutions are also given for both

the Merton (1973) and the CEV models, which will be used in the subsequent empirical

analysis. The latter result constitutes an innovation with respect to the previous literature.

Proposition 4 Under the geometric Brownian motion assumption, that is for σ (t, S) = σ

in equation (2), the American option value function given by Proposition 1 converges, in the

limit, to the perpetual formulae given by McKean (1965) or Merton (1973), i.e.

(25) lim
T↑∞

Vt (S,K, T ;φ) = (φK − φE∞)

µ
E∞
St

¶γ(φ)

,

where φSt > φE∞, E∞ denotes the constant exercise boundary,

(26) γ (φ) :=
r − q − σ2

2
+ φ

q¡
r − q − σ2

2

¢2
+ 2σ2r

σ2
,

φ = −1 for an American call and φ = 1 for an American put.

Under the CEV model and for r 6= q, the perpetual American option price is equal to

lim
T↑∞

Vt (S,K, T ;φ) = (φK − φE∞)

µ
St
E∞

¶η(φ)

exp {η (φ) [x (St)− x (E∞)]}

Mφ(β−2)

h
η (φ) + (−1)η(φ) α, β−1−2η(φ)

β−2 ; (−1)η(φ) x (St)
i

Mφ(β−2)

h
η (φ) + (−1)η(φ) α, β−1−2η(φ)

β−2 ; (−1)η(φ) x (E∞)
i ,(27)
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where

(28) η (φ) :=

 11{r>q,β<2} ⇐ φ = 1

1− 11{r>q,β>2} ⇐ φ = −1
,

(29) α :=
r

(β − 2) (r − q)
,

(30) x (S) :=
2 (r − q)

δ2 (β − 2)
S2−β,

and

(31) Mλ (a, b; z) :=

 M (a, b; z)⇐ λ > 0

U (a, b; z)⇐ λ < 0
,

with M (a, b; z) and U (a, b; z) representing the confluent hypergeometric Kummer’s func-

tions.6 For r = q,

(32) lim
T↑∞

Vt (S,K, T ;φ) = (φK − φE∞)

r
St
E∞

I 1
|β−2| ;φ(β−2)

£
ε (St)

√
2r
¤

I 1
|β−2| ;φ(β−2)

£
ε (E∞)

√
2r
¤ ,

where

(33) ε (S) :=
2S1−

β
2

δ |β − 2| ,

and

(34) Iν;λ (z) :=

 Iν (z)⇐ λ > 0

Kν (z)⇐ λ < 0
,

with Iν (z) and Kν (z) representing the modified Bessel functions.7

Proof. See Appendix C.
6As defined by Abramowitz and Stegun ((1972), equations 13.1.2 and 13.1.3).
7See, for instance, Abramowitz and Stegun ((1972), p. 375).
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IV. The First Passage Time Density

To implement the new American option value representation offered by Proposition 1, it

is necessary to compute the first passage time density of the underlying asset price to the

moving exercise boundary.

Following Buonocore, Nobile, and Ricciardi ((1987), eq. 2.7), a Fortet (1943)-type in-

tegral equation can be obtained for the optimal stopping time density under consideration.

Notably, such non-linear integral equation involves only the transition density function of

the underlying asset price. This result, contained in the next proposition, is valid for any

Markovian underlying diffusion process and for any continuous representation of the exercise

boundary.

Proposition 5 Assuming that the underlying asset price St follows a Markovian diffusion

process and considering that the optimal exercise boundary is a continuous function of time,

the first passage time density of the underlying asset price to the moving exercise boundary

is the implicit solution of the following non-linear integral equation:

(35)
Z u

t0

Q (φSu ≤ φEu|Sv = Ev)Q (τ e ∈ dv| Ft0) = Q (φSu ≤ φEu| Ft0) ,

for φSt0 > φEt0, where u ∈ [t0, T ], and with φ = −1 for an American call or φ = 1 for an

American put.

Proof. Assuming that the exercise boundary is continuous on [t0, u] and that φSt0 > φEt0 ,

while using definition (5), the distribution function of the optimal stopping time can be

written as:8

Q (τ e ≤ u| Ft0) = Q
·
inf

t0≤v≤u
(φSv − φEv) ≤ 0, φSu ≤ φEu

¯̄̄̄
Ft0

¸
+Q

·
inf

t0≤v<u
(φSv − φEv) ≤ 0, φSu > φEu

¯̄̄̄
Ft0

¸
.

8Notice that inft0≤v<u [− (Sv −Ev)] = − supt0≤v<u (Sv −Ev).
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Since Q [ inft0≤v≤u (φSv − φEv) ≤ 0, φSu ≤ φEu| Ft0 ] = Q (φSu ≤ φEu| Ft0) and because the

underlying price process is assumed to be Markovian,

Q (τ e ≤ u| Ft0) = Q (φSu ≤ φEu| Ft0)(36)

+

Z u

t0

Q (φSu > φEu|Sv = Ev)Q (τ e ∈ dv| Ft0) .

Finally, considering that Q (τ e ≤ u| Ft0) =
R u
t0
Q (τ e ∈ dv| Ft0), equation (35) follows imme-

diately from equation (36).

Propositions 1 and 5 show that an explicit solution for the European option and knowl-

edge of the transition density function of the underlying price process are the only require-

ments for the analytical valuation of the American contract. Hence, the proposed methodol-

ogy can be fruitfully applied to many other Markovian pricing systems besides the standard

case covered by equation (2). One of such extensions will be discussed in Section VII.

Proposition 5 can be specialized easily for the Merton (1973) and the CEV models, which

will be used in the numerical analysis to be presented in Section VI. For σ (t, S) = σ, the

underlying price process–as given by equation (2)–becomes lognormally distributed, and

equation (35) can be restated as

(37)
Z u

t0

Φ

µ
φ
Ez
v −Ez

u√
u− v

¶
Q (τ e ∈ dv| Ft0) = Φ

µ
−φ Ez

u√
u− t0

¶
,

with

(38) Ez
v :=

ln
³
St0
Ev

´
+
³
r − q − σ2

2

´
(v − t0)

σ
,

and where Φ (·) represents the cumulative density function of the univariate standard normal

distribution. Equation (37) is consistent with Park and Schuurmann ((1976), Theorem 1)

and similar to the integral equation used by Longstaff and Schwartz ((1995), eq. A6). For

σ (t, S) = δS
β
2
−1

t , it is well known–see, for example, Schroder ((1989), eq. 1) for β < 2, or

Emanuel and MacBeth ((1982), eq. 7) for β > 2–that

(39) Q (Su ≤ Eu|Sv = Ev) =

 Qχ2( 2
2−β ,2κE

2−β
u )

¡
2κE2−β

v e(2−β)(r−q)(u−v)
¢
⇐ β < 2

Qχ2(2+ 2
β−2 ,2κE

2−β
v e(2−β)(r−q)(u−v))

¡
2κE2−β

u

¢
⇐ β > 2

,
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with

(40) κ :=
2 (r − q)

(2− β) δ2 [e(2−β)(r−q)(u−v) − 1]
,

and where Qχ2(a,b) (x) represents the complementary distribution function of a non-central

chi-square law with a degrees of freedom and non-centrality parameter b. Combining equa-

tions (35) and (39), a non-linear integral equation follows immediately for the optimal stop-

ping time density under the CEV model.

Except for such crude critical asset price specifications as, for example, the constant and

exponential functional forms used by Ingersoll (1998) under the geometric Brownian motion

assumption, the optimal stopping time density is not known in closed-form. Following Kuan

and Webber (2003), the next proposition shows that such first passage time density can be

efficiently computed, for any exercise boundary specification, through the standard partition

method proposed by Park and Schuurmann (1976).

Proposition 6 Under the assumptions of Proposition 5, and dividing the time-interval

[t0, T ] into N sub-intervals of (equal) size h := T−t0
N
, then

EEPt0 (S,K, T ;φ) =
NX
i=1

nh
φK − φE

t0+
(2i−1)h

2

i
− v

t0+
(2i−1)h

2
(E,K, T ;φ)

o
(41)

e−r
(2i−1)h

2 [Q (τ e = t0 + ih)−Q (τ e = t0 + (i− 1)h)] ,

where φ = −1 for an American call or φ = 1 for an American put. The probabilities

Q (τ e = t0 + ih) are obtained from the following recurrence relation:

Q (τ e = t0 + ih)(42)

= Q (τ e = t0 + (i− 1)h) +
n
Fφ

h
Et0+ih;Et0+

(2i−1)h
2

io−1
(
Fφ (Et0+ih;St0)−

i−1X
j=1

Fφ

h
Et0+ih;Et0+

(2j−1)h
2

i
[Q (τ e = t0 + jh)−Q (τ e = t0 + (j − 1)h)]} ,

for i = 1, . . . , N , where Q (τ e = t0) = 0, and with

(43) Fφ (Eu;St0) := Q (φSu ≤ φEu| Ft0)
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representing the risk-neutral cumulative density function, for φ = 1, or the complementary

distribution function, for φ = −1, of the underlying price process.

Proof. Equations (41) and (42) are obtained via discretization of equations (11) and (35)

for the partition t0 < t1 < . . . < tN = T , where ti = t0+ ih (i = 1, . . . , N), and u = ti+ti−1
2
.

V. Specification of the Exercise Boundary

The pricing solution offered by Proposition 1 depends on the specification adopted for the

exercise boundary {Et, t0 ≤ t ≤ T}. Although such an optimal exercise policy is not known

ex ante (i.e., before the solution of the pricing problem), its main characteristics have al-

ready been established in the literature:9 i) The exercise boundary is a continuous function

of time–see, for instance, Jacka ((1991), Propositions 2.2.4 and 2.2.5); ii) Et is a non-

decreasing function of time t for the American put, but non-increasing for the American

call contract–see Jacka ((1991), Proposition 2.2.2); iii) the exercise boundary is limited by

ET = φmin
³
φK, φ r

q
K
´
–as stated in Van Moerbeke (1976); and iv) limt↑∞Et = E∞, where

E∞ represents the (constant) critical asset price for the perpetual American case.

As described by Ingersoll ((1998), p. 89), in order to price an American option, it is

necessary to choose a parametric family E of exercise policies Et (θ), where each policy is

characterized by an n-dimensional vector of parameters θ ∈ Rn. Then, the early exercise

value (as given by equation (11)) is expressed as a function of θ and maximized with respect

to the parameters. Since the chosen family E may not contain the optimal exercise boundary,

the resulting American option price constitutes a lower bound for the true option value.

Of course, the more general the specification adopted for the exercise boundary, the

smaller the approximation error associated with the American price estimate should be.

However, the parametric families already proposed in the literature have been chosen not

for their generality but because they provide fast analytical pricing solutions. In order to

9Bunch and Johnson (2000) propose, under the Merton (1973) model, an approximation for the critical-

stock-price function which is accurate for small times to maturity.
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measure the accuracy improvement provided by more general families of exercise policies,

Section VI will consider the following parametric specifications:

1. Constant exercise boundary:

(44) Et (θ) = θ1, θ1 > 0.

This is the simplest specification one can adopt and has already been used by In-

gersoll (1998) and Sbuelz (2004), under the geometric Brownian motion assumption.

Although it yields a closed-form solution for equation (11), such an exercise boundary

cannot simultaneously satisfy previously stated requirements (iii) and (iv).

2. Exponential family:

(45) Et (θ) = θ1e
θ2(T−t), θ1 > 0, φθ2 < 0.

This specification, already proposed by Ingersoll (1998) for the geometric Brownian

motion process, also yields an analytical solution for equation (11), but again cannot

simultaneously satisfy requirements (iii) and (iv).

3. Exponential-constant family:

(46) Et (θ) = θ1 + eθ2(T−t), φθ2 < 0.

This new parameterization corresponds to a simple modification of equation (45) and

has never been proposed in the literature. Section VI will show that it can produce

smaller pricing errors than equation (45) for the same number of parameters.

4. Polynomial family:

(47) Et (θ) =
nX
i=1

θi (T − t)i−1 .
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Because the exercise boundary is assumed to be continuous and defined on the closed

interval [t0, T ], the Weierstrass approximation theorem implies that Et can be uni-

formly approximated, for any desired accuracy level, by the polynomial (47). By in-

creasing the degree of the polynomial (and therefore, the number of parameters to be

estimated), this new class of exercise policies allows the pricing error to be arbitrarily

reduced. Section VI will reveal that with only five parameters it is possible to obtain

smaller pricing errors than with many alternative specifications already proposed in

the literature.

5. CJM family:

(48) Et (θ) = φmin

µ
φK, φ

r

q
K

¶
e−θ1

√
T−t +E∞

³
1− e−θ1

√
T−t
´
, θ1 ≥ 0.

Equation (48) corresponds to an exponentially weighted average between the terminal

bound and the perpetual limit of the exercise boundary, and fulfills all of requirements

(i)—(iv). Such a specification was proposed by Carr, Jarrow, and Myneni ((1992), p.

93), but has never been tested since it does not yield an analytical solution for the

American option price. The next section will show that, with only one parameter, the

magnitude of pricing errors produced by this specification is similar to that associated

with the best parameterizations already available in the literature.

VI. Numerical Results

To test the accuracy and efficiency of the pricing solutions proposed in Proposition 1 and the

influence of the exercise boundary specification on the early exercise value, all the parametric

families described in Section V will be compared for different constellations of the coefficients

contained in equation (2), and under two special cases: the geometric Brownian motion and

the CEV processes. For this purpose, the maximization of the early exercise value (with
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respect to the parameters defining the exercise policy) is implemented through Powell’s

method, as described in Press, Flannery, Teukolsky, and Vetterling ((1994), Section 10.5).10

To enhance the efficiency of the proposed valuation method, the parameters defining

the exercise policy are first estimated by discretizing both Propositions 1 and 5 using only

N = 24 time-steps. Then, and based on such an approximation for the optimal exercise

boundary, the early exercise premium is computed from Proposition 6 using N = 28 time

steps. The crude discretization adopted in the optimization stage should not compromise the

accuracy of the pricing formulae proposed because, as noted by Ju ((1998), p. 642) in the

context of the Merton (1973) model, a detailed description of the early exercise boundary is

not necessary to generate accurate American option values.

Table 1 values short maturity American put options under different specifications of the

exercise boundary, and based on the option parameters contained in Broadie and Detemple

((1996), Table 1), and Ju ((1998), Table 1) for the Black and Scholes (1973) model. Accuracy

is measured by the average absolute percentage error (over the 20 contracts considered) of

each valuation approach and with respect to the exact American option price. This proxy of

the “true” American put value (fourth column) is computed through the binomial tree model

with 15, 000 time steps, as suggested by Broadie and Detemple ((1996), p. 1222). Efficiency

is evaluated by the total CPU time (expressed in seconds) spent to value the whole set of

contracts considered. All computations were made with Pascal programs running on an Intel

Pentium 4 2.80 GHz processor under a Linux operating system.

Insert Table 1 about here.

The American put prices produced by the analytical pricing solutions associated with the

constant and exponential boundary specifications (fifth and sixth columns of Table 1), as

10This method requires evaluations only of the function to be maximized and therefore is faster than a

conjugate gradient or a quasi-Newton algorithm. Nevertheless, it is always possible to use a more robust

optimization method, because the derivatives of the first passage time density can be computed through a

recurrence relation similar to equation (42). Details are available upon request.
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given by equations (44) and (45), respectively, are obtained from Ingersoll ((1998), sections

4 and 5). All the other early exercise boundary approximations (i.e., from the seventh to

the tenth columns of Table 1) are implemented through Proposition 6. For comparison

purposes, the last three columns of Table 1 contain the American put prices generated by

the full (with 2, 000 time steps)11 and the 10-point accelerated recursive methods of Huang,

Subrahmanyam, and Yu (1996), and by the three-point multipiece exponential function

method proposed by Ju (1998). The choice of the multipiece exponential approximation

as a benchmark for the best pricing methods already proposed in the literature, under the

geometric Brownian motion assumption, follows from Ju ((1998), Tables 3 and 5): it is faster

than the randomization method of Carr (1998) (for the same accuracy level) and much more

accurate, for hedging purposes, than the econometric approach of Broadie and Detemple

(1996).

The fastest approximations (in terms of CPU time) are the constant, the exponential,

and the three-point multipiece exponential specifications, as well as the accelerated recursive

method of Huang, Subrahmanyam, and Yu (1996): they all possess computational times

below 0.2 seconds for the range of all contracts under consideration. However, the pricing

errors generated by the constant and the exponential parameterizations can be significant.

For instance, the average mispricing of the constant parameterization equals 41 basis points.

Additionally, and as shown by Ju ((1998), Tables 1 and 2), the accuracy of the 10-point

recursive scheme deteriorates as the option maturity increases.

With the same number of parameters as the already known exponential approximation,

the new exponential-constant parameterization can yield pricing errors about three times

smaller. Even more interestingly, the CJM approximation suggested by Carr, Jarrow, and

Myneni (1992) and tested here possesses an accuracy similar to the three-point multipiece

exponential approach. This result is relevant since the CJM approximation satisfies all the

requirements described in Section V for the early exercise boundary specification.

Table 1 also shows that the implementation of a polynomial approximation is able to

achieve smaller pricing errors than the Ju (1998) approach. The Huang, Subrahmanyam,

11As suggested by Detemple and Tian ((2002), p. 924).
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and Yu (1996) full recursive method yields an even higher precision level, but at the expense

of a prohibitive computational effort. Overall, taking into consideration both accuracy and

efficiency, the best pricing methodology, under the geometric Brownian motion assumption,

is still the multipiece exponential approach of Ju (1998). Nevertheless, the disparity of

pricing errors contained in Table 1 shows that the early exercise premium depends largely

on the specification adopted for the early exercise boundary.

Insert Table 2 about here.

Tables 2 and 3 repeat the analysis contained in Table 1 for the same parameter values,

but under the CEV model. Table 2 assumes β = 3 (> 2) and prices American put contracts

with a time-to-maturity of six months, while Table 3 considers a square root process with

β = 1 (< 2) and American call options with a time-to-maturity of one year. Parameter δ is

computed from equation (3) by imposing the same instantaneous volatility as in Table 1.

The proxy of the exact American option price (fourth column) is now computed through

the Crank-Nicolson finite difference method with 15, 000 time intervals and 10, 000 space

steps. Besides the early exercise boundary specifications described in Section V, Tables 2

and 3 also contain the full recursive scheme (eleventh column), as suggested by Detemple and

Tian ((2002), Proposition 3), and a 10-point accelerated recursive approach (last column),

along the lines of Kim and Yu ((1996), subsection 3.4).12

Insert Table 3 about here.

As before, the constant specification generates excessively large (absolute) pricing er-

rors and the new exponential-constant parameterization yields an accuracy higher than the
12The trinomial approach developed by Boyle and Tian (1999) for the valuation of barrier and lookback

options under the CEV model (for 0 ≤ β < 2) can also be used to price American standard calls and puts.

However, the numerical experiments run have shown that the adopted Crank-Nicolson scheme possesses

better convergence properties.
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exponential specification for American put contracts (see Table 2). In contrast, Table 3

shows that the exponential boundary is more accurate for American call contracts than the

new formulation given by equation (46). Under the CEV model, the CJM approximation

presents an excellent performance even though the pricing errors are now affected by the

approximation employed to evaluate the non-central chi-square distribution function,13 as

well as by the root-finding routine used to extract the optimal constant exercise boundary

E∞ from equations (27) and (32).

In terms of accuracy, the Detemple and Tian (2002) approach constitutes the best pric-

ing method for the CEV model. However, this approach is based on the full recursive

method (with 2, 000 time steps) of Huang, Subrahmanyam, and Yu (1996), which is very

time consuming–six times slower than the exact Crank-Nicolson implicit finite-difference

scheme. The accelerated recursive scheme of Kim and Yu (1996) is much more efficient

but can also be inaccurate for medium- and long-term options. The last column of Table 3

shows a mean absolute percentage error of about 16 basis points. On the contrary, Tables 1

through 3 show that the accuracy of the pricing methodology proposed in Proposition 1 is

not affected by the time-to-maturity of the option contract under valuation. Moreover, for

almost all the parameterizations tested (with the single exception of the polynomial speci-

fication), the computational time of the proposed pricing methodology corresponds to less

than one second per contract.

Insert Table 4 about here.

Under the CEV model, the best trade-off between accuracy and efficiency is given by the

polynomial approximations presented in Tables 2 and 3, since their accuracy can always be

improved by increasing their degree. Table 4 applies different polynomial specifications to a
13Equation (39) is computed from routine “cumchn”, which is contained in the Fortran library of Brown,

Lovato, and Russell (1997). This routine is based on Abramowitz and Stegun ((1972), eq. 26.4.25), and is

found to be more precise than the algorithm offered by Schroder (1989) or theWiener germ approximations

proposed by Penev and Raykov (1997), especially for large values of the non-centrality parameter or of the

upper integration limit.

23



random sample of 1, 250 American put options, where all the option parameters, with the

exception of β and δ, are extracted from the same uniform distributions as in Ju ((1998),

Table 3).14 With a six-degree polynomial it is possible to obtain an average absolute per-

centage error (computed against the Crank-Nicolson solution) of only 1.5 basis points and a

maximum absolute percentage error of about 9 basis points, which corresponds to a higher

accuracy than that associated with the 10-point accelerated recursive scheme.

As expected, the pricing errors produced by the specifications described in Section V

are negative because any approximation of the optimal exercise policy can yield only a

lower bound for the true American option price. The only exception corresponds to the

10-point recursive method, which might be explained by the non-uniform convergence of the

Richardson extrapolation employed.

In summary, the numerical results presented in Tables 2, 3 and 4 configure the implemen-

tation of Proposition 1 through a polynomial specification of the early exercise boundary as

the best pricing alternative, under the CEV model, for medium- and long-term American

option contracts.

VII. Extension to Credit Risk Modeling

This section shows that the optimal stopping approach proposed in this paper is easily

extended to the context of the Carr and Linetsky (2006) model, yielding analytical pricing

solutions for American equity options under default risk.

Carr and Linetsky (2006) construct a unified framework for the valuation of corporate

liabilities, credit derivatives, and equity derivatives as contingent claims written on a default-

14From the uniform distribution adopted for the instantaneous volatility, the parameter δ is obtained from

equation (3). Parameter β is assumed to possess a uniform distribution between 0 and 4.0. The scenario

β < 0 is ignored because it would imply unrealistic economic properties for the CEV process; namely,

bankruptcy would be attainable for sufficiently negative values of β (which is implausible, for instance, when

considering options on stock indices), and underlying asset price volatility would explode as the spot price

tends to the origin.
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able stock. The price of the defaultable stock is modeled as a time-inhomogeneous diffusion

process solving the stochastic differential equation

(49)
dSt
St

= [rt − qt + λ (t, S)] dt+ σ (t, S) dWQ
t ,

with St0 > 0, and where the interest rate rt and the dividend yield qt are now deterministic

functions of time, while the instantaneous volatility of equity returns σ (t, S) and the default

intensity λ (t, S) can also be state-dependent. Again, F = {Ft : t ≥ t0} is the filtration gen-

erated by the standard Wiener process WQ
t ∈ R, and the equivalent martingale measure Q

is taken as given.15

The pricing model proposed by Carr and Linetsky (2006) can either diffuse or jump to

default. In the first case, bankruptcy occurs at the first passage time of the stock price to

zero:

(50) τ 0 := inf {t > t0 : St = 0} .

Alternatively, the stock price can also jump to a cemetery state whenever the hazard process
1

11{t<τ0}

R t
t0
λ (u, S) du is greater or equal to the level drawn from an exponential random vari-

able Θ independent of WQ
t and with unit mean, i.e. at the first jump time

(51) ζ̃ := inf

½
t > t0 :

1

11{t<τ0}

Z t

t0

λ (u, S) du ≥ Θ

¾
of a doubly-stochastic Poisson process with intensity λ (t, S). Therefore, the time of default

is simply given by

(52) ζ = τ 0 ∧ ζ̃,

and D = {Dt : t ≥ t0} is the filtration generated by the default indicator process Dt = 11{t>ζ}.

15The inclusion of the hazard rate λ (t, S) in the drift of equation (49) compensates the stockholders for

default (with zero recovery) and insures, under measure Q, an expected rate of return equal to the risk-free

interest rate. Nevertheless, such equivalent martingale measure will not be unique because the arbitrage-free

market considered by Carr and Linetsky (2006) is incomplete in the sense that the jump to default will not

be modeled as a stopping time of F.
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Using the same terminology as in Section II, the time-t0 value of an American option on

the stock price S, with strike price K, and with maturity date T can now be represented by

the following Snell envelope:

Vt0 (S,K, T ;φ) = sup
τ∈T

n
EQ
h
e−

T∧τ
t0

rldl (φK − φST∧τ)
+ 11{ζ>T∧τ}

¯̄̄
Gt0
i

(53)

+EQ
h
e−

ζ
t0
rldl (φK)+ 11{ζ≤T∧τ}

¯̄̄
Gt0
io

,

where T is the set of all stopping times (taking values in [t0,∞]) for the enlarged filtration

G = {Gt : t ≥ t0}, with Gt = Ft ∨ Dt. For the American call (φ = −1) there is no recovery

if the firm defaults. However, for the American put (φ = 1), the second expectation on the

right-hand side of equation (53) corresponds to a recovery payment equal to the strike K

at the default time ζ ≤ T ∧ τ . Moreover, since the (unknown) early exercise boundary lies

between zero (the bankruptcy boundary) and St0 (given that the American put is assumed

to be alive on the valuation date), then the default event cannot precede the early exercise

of the option contract, that is {ζ ≤ T ∧ τ} = {ζ ≤ T}. Therefore,

(54) Vt0 (S,K, T ;φ) = V 0
t0
(S,K, T ;φ) + V D

t0
(S,K, T ;φ) ,

where

V 0
t0 (S,K, T ;φ) = sup

τ∈T

n
EQ
h
e−

τ
t0
rldl (φK − φSτ)

+ 11{ζ>τ}11{τ<T}

¯̄̄
Gt0
i

(55)

+e−
T
t0
rldlEQ

£
(φK − φST )

+ 11{ζ>T}11{τ≥T}
¯̄
Gt0
¤o

,

and

(56) V D
t0
(S,K, T ;φ) = (φK)+ EQ

³
e−

ζ
t0
rldl11{ζ≤T}

¯̄̄
Gt0
´
.

For the American put, the term V D
t0
(S,K, T ; 1) is essentially an American-style default-

contingent claim, which is similar to the floating leg of a credit default swap (CDS), and can

be valued through Carr and Linetsky ((2006), eq. 3.4). Concerning the American option

value conditional on no default, identity (7) implies that

(57) V 0
t0
(S,K, T ;φ) = v0t0 (S,K, T ;φ) +EEP 0

t0
(S,K, T ;φ) ,
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where

(58) v0t0 (S,K, T ;φ) = e−
T
t0
rldlEQ

£
(φK − φST )

+ 11{ζ>T}
¯̄
Gt0
¤

represents the time-t0 price of the corresponding European option (conditional on no default

until the maturity date T ), and the early exercise premium is equal to

EEP 0
t0
(S,K, T ;φ) = sup

τ∈T

n
EQ
h
e−

τ
t0
rldl (φK − φSτ)

+ 11{ζ>τ}11{τ<T}

¯̄̄
Gt0
i

(59)

−e−
T
t0
rldlEQ

£
(φK − φST )

+ 11{ζ>T}11{τ<T}
¯̄
Gt0
¤o

.

The next proposition provides an analytical representation of the early exercise premium

given in equation (59).

Proposition 7 Under the pricing model defined by equations (49) through (52), the time-t0

value of the early exercise premium for an American option on the stock price S, with strike

price K, and with maturity date T is equal to

EEP 0
t0
(S,K, T ;φ)(60)

=

Z T

t0

e−
u
t0
rldl
£
(φK − φEu)

+ − v0u (E,K, T ;φ)
¤
SP (t0, u)Q (τ e ∈ du| Ft0) ,

where {Eu, t0 ≤ u ≤ T} is the (unknown) early exercise boundary, φ = 1 (−1) for an Amer-

ican put (call), and

(61) SP (t0, u) := EQ
h
e−

u
t0
λ(l,S)dl11{τ0>u}

¯̄̄
Ft0

i
represents the risk-neutral probability of surviving beyond time u > t0. The first passage time

τ e is defined by equation (5), and its probability density function is still recovered through

equation (35).

Proof. See Appendix D.

Because both the default intensity and the instantaneous stock volatility have been left

unspecified, Proposition 7 can be applied to many defaultable stock models already available

in the literature, such as those proposed by Madan and Unal (1998) or Linetsky (2006).
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Carr and Linetsky (2006) try to accommodate the leverage effect by adopting a CEV

specification for the instantaneous stock volatility:

(62) σ (t, S) = atS
β̄
t ,

where β̄ < 0 is the volatility elasticity parameter, and at > 0 is a deterministic volatility

scale function. To be consistent with the empirical evidence of a positive relationship between

default probabilities and equity volatility, Carr and Linetsky (2006) further assume that the

default intensity is an increasing affine function of the instantaneous stock variance:

(63) λ (t, S) = bt + cσ (t, S)2 ,

where c ≥ 0, and bt ≥ 0 is a deterministic function of time. In summary, equations (49)

to (52), together with equations (62) and (63) constitute the jump to default extended CEV

model (JDCEV) proposed by Carr and Linetsky (2006).16

Compared with the previous literature on defaultable stock models, the JDCEV model

offers an exact match to the term structures of CDS spreads and/or at-the-money implied

volatilities (through the time-dependent functions at and bt), even though it explicitly incor-

porates the dependency on the current stock price S of both λ (t, S) and σ (t, S). Neverthe-

less, the JDCEV model preserves analytical tractability since it offers closed-form solutions

for both European options and the transition density function of the underlying stock price

process. The next proposition provides an analytical solution for the distribution function

of the price process S, which allows the first passage time density to be determined for the

JDCEV model through the numerical solution of the non-linear integral equation (35).

16Note that the time-homogeneous version of the JDCEV model with b = c = 0 is reduced to a CEV

process with absorption at point 0. In this case, equations (11) and (60) differ only because the former

takes the survival probability to equal 1. However, since Delbaen and Shirakawa ((2002), Theorem 4.2) have

shown that the CEV model admits arbitrage opportunities when it is conditioned to be strictly positive,

Proposition 7 should also be applied to the CEV process.
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Proposition 8 Under the JDCEV model defined by equations (49) through (52), (62) and

(63),

Q (Su ≤ Eu|Sl = El)(64)

=

"
k (l, l;El)

2

τ (l, u)

#(−v)+
Φ−

"
− (−v)+ , k (l, u;Eu)

2

τ (l, u)
; 2 (1 + |v|) , k (l, l;El)

2

τ (l, u)

#
,

where l ≤ u,

(65) v :=
c− 1

2¯̄
β̄
¯̄ ,

(66) τ (l, u) :=

Z u

l

a2se
−2|β̄| s

l αhdhds

with

(67) αu := ru − qu + bu,

(68) k (l, u;E) :=
1¯̄
β̄
¯̄E|β̄|e−|β̄| u

l αsds

for any E ∈ R, and Φ− (p, y; a, b) := E
¡
Xp11{X≤y}

¢
represents the truncated p-th moment

of a non-central chi-square random variable X with a degrees of freedom and non-centrality

parameter b.

Proof. See Appendix E.

To illustrate the proposed pricing methodology, Table 5 prices long-term American put

options based on the same parameter constellations used in Table 3, but under a time-

homogeneous JDCEVmodel with c = 0.5 and b = 0.02. The European put prices conditional

on no default–as given by equation (58) with φ = 1–are computed through Carr and

Linetsky ((2006), eq. 5.18), whereas the recovery component of the European put contract

(fourth column of Table 5) is obtained from Carr and Linetsky ((2006), equations 3.11

and 5.14). For this purpose, the series solution provided by Carr and Linetsky ((2006),

Lemma 5.1) to the function Φ− (·) is implemented using the Temme (1994) algorithm for

the incomplete Gamma function. The early exercise premium is obtained from Propositions
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7 and 8, under a four-degree polynomial specification, and where the risk-neutral survival

probability (61) is recovered from Carr and Linetsky ((2006), eq. 5.14). Finally, the recovery

component (56) of the American put contract (eighth column of Table 5) is computed by

solving Carr and Linetsky ((2006), eq. 5.15) through Romberg’s integration method on an

open interval.

Insert Table 5 about here.

As already shown by Carr and Linetsky ((2006), Table 1) in the context of European put

contracts, the value of the out-of-the-money American put options contained in Table 5 is

largely dominated by the recovery component (56).

VIII. Conclusions

The main theoretical contribution of this paper consists in deriving an alternative charac-

terization of the early exercise premium, which possesses appropriate asymptotic properties,

and is valid for any Markovian and diffusion representation of the underlying asset price as

well as for any parameterization of the exercise boundary. The proposed pricing methodol-

ogy was also extended, in Proposition 7, to the valuation of American equity options under

default risk, and specialized, in Proposition 8, to the context of the JDCEV model.

The intuitive representation offered by Proposition 1 is simply based on the observation

that the discounted and stopped early exercise premiummust be a martingale under the risk-

neutral measure. Additionally, the Markov property ensures analytical tractability since

it enables the decomposition of the joint density between the first hitting time and the

underlying asset price through the convolution of their marginal densities.

To test the proposed pricing methodology and to highlight its generality, several parame-

terizations of the exercise boundary were compared under the geometric Brownian motion

assumption and for the CEV process. For both option pricing models, the continuity of
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the early exercise boundary allows the pricing errors to be arbitrarily reduced through a

polynomial specification, which can be easily accommodated by the proposed methodology.

Under the Merton (1973) model, the multipiece exponential approach of Ju (1998) offers

the best compromise between accuracy and efficiency. However, under the CEV model,

Proposition 1 provides the best pricing alternative for medium- and long-term American

options. Whereas the early exercise premium formula proposed in equation (11) involves

only a single time-integral, the representations offered by Kim and Yu (1996) or Detemple

and Tian (2002) pose a more demanding two-dimensional integration problem (with respect

to time and to the underlying asset price). Moreover, although Proposition 1 requires the

numerical evaluation of the first passage time density (which is shown to be easily recovered

from the transition density function), the formulas offered by Kim and Yu (1996), and

Detemple and Tian (2002) rely on the numerical and recursive solution of a set of value-

matching (or high-contact) implicit integral equations, which are too time-consuming for

practical purposes. And, even though such a recursive scheme can be accelerated through

Richardson extrapolation, the pricing methodology proposed by Huang, Subrahmanyam,

and Yu (1996) may yield inaccurate results for medium- and long-term options.

Since the analytical pricing of American options under the geometric Brownian motion

process is already well established through the randomization approach of Carr (1998) or the

multipiece exponential boundary approximation of Ju (1998), the characterization proposed

in Proposition 1 can be more fruitfully applied under alternative (but Markovian) stochastic

processes for the underlying asset price, as exemplified, in this paper, by the CEV and

JDCEV models. For this purpose to be accomplished in an efficient way, it is required only

that the selected price process provides a viable valuation method for European options and

for its transition density function. This should be the case for multivariate Markovian models

accommodating stochastic volatility and/or stochastic interest rates, for which the recursive

scheme of Kim and Yu (1996) cannot be applied. Nevertheless, given space constraints, both

extensions are left for future work.
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Appendix A. Proof of Proposition 2

Concerning the boundary condition (18), since

lim
r↓0

ET = min

µ
K, lim

r↓0

r

q
K

¶
= 0,

and because the exercise boundary {Eu, t ≤ u ≤ T} is a non-decreasing function of u for an

American put, then

(A-1) lim
r↓0

Eu = 0, ∀u ∈ [t, T ] .

Combining equations (11) and (A-1),

(A-2) lim
r↓0

EEPt (S,K, T ; 1) =

Z T

t

·
K − lim

r↓0
vu (0,K, T ; 1)

¸
lim
r↓0
Q (τ e ∈ du| Ft) .

Finally, since
£
e−r(T−u)K − Su

¤+ ≤ vu (S,K, T ; 1) ≤ e−r(T−u)K follows from straightforward

no-arbitrage arguments, then limr↓0 vu (0, K, T ; 1) = K and equation (A-2) yields the bound-

ary condition (18).

The terminal condition (19) follows immediately from equation (10) because vT (S,K, T ;φ)

= (φK − φST )
+ and EEPT (S,K, T ;φ) = 0.

Concerning the boundary condition (20), because limS↑∞ vt (S,K, T ; 1) = 0, equations

(10) and (11) imply that:

lim
S↑∞

Vt (S,K, T ; 1)(A-3)

=

Z T

t

e−r(u−t) [(K − Eu)− vu (E,K, T ; 1)] lim
S↑∞

Q (τ e ∈ du| Ft) .

Assuming that limS↑∞ Su =∞, ∀u ≥ t, then limS↑∞Q (τ e ∈ du| Ft) = 0, and the boundary

condition (20) is obtained, because the exercise boundary is independent of the current asset

price and finite. Similar reasoning can be applied to derive the boundary condition (21).
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Finally, the value-matching condition (22) is also easily derived from equations (10) and

(11):

lim
S→Et

Vt (S,K, T ;φ)(A-4)

= vt (E,K, T ;φ)

+

Z T

t

e−r(u−t) [(φK − φEu)− vu (E,K, T ;φ)] lim
S→Et

Q (τ e ∈ du| Ft) .

Since

lim
S→Et

Q (τ e ∈ du| Ft0) = δ (u− t) ,

where δ (·) is the Dirac-delta function, equation (A-4) yields

lim
S→Et

Vt (S,K, T ;φ) = vt (E,K, T ;φ) + e−r(t−t) [(φK − φEt)− vt (E,K, T ;φ)]

= (φK − φEt) .

Appendix B. Proof of Proposition 3

Applying the parabolic operator L to equations (10) and (11), and using Leibniz’s rule,

LVt (S,K, T ;φ)(B-1)

= Lvt (S,K, T ;φ) +

Z T

t

re−r(u−t) [(φK − φEu)− vu (E,K, T ;φ)]Q (τ e ∈ du| Ft)

+

Z T

t

e−r(u−t) [(φK − φEu)− vu (E,K, T ;φ)]LQ (τ e ∈ du| Ft)

−e−r(t−t) [(φK − φEt)− vt (E,K, T ;φ)]Q (τ e = t| Ft) .

Because Lvt (S,K, T ;φ) = 0, considering that Q (τ e = t| Ft) = 0–since Proposition 3 as-

sumes that φSt > φEt–and using definition (24), equation (B-1) can be simplified to

LVt (S,K, T ;φ)(B-2)

=

Z T

t

e−r(u−t) [(φK − φEu)− vu (E,K, T ;φ)]

µ
∂

∂t
+A

¶
Q (τ e ∈ du| Ft) ,
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where A is the infinitesimal generator of S. Sinceµ
∂

∂t
+A

¶
Q (τ e ∈ du| Ft) = 0

can be interpreted as a Kolmogorov backward equation, the partial differential equation (23)

is obtained.

Appendix C. Proof of Proposition 4

For the perpetual American option, the critical asset price is a time-invariant constant, that

is, Eu = E∞,∀u ∈ [t, T ]. Hence, the limit of equation (10), as the option’s maturity date

tends to infinity, is given by

lim
T↑∞

Vt (S,K, T ;φ)

= lim
T↑∞

vt (S,K, T ;φ)

+ lim
T↑∞

Z T

t

e−r(u−t) [(φK − φE∞)− vu (E∞,K, T ;φ)]Q (τ e ∈ du| Ft) .

Furthermore, the fair value of a perpetual European put or call option on a dividend-paying

asset is equal to zero and, consequently,

lim
T↑∞

Vt (S,K, T ;φ) = (φK − φE∞)

Z ∞

t

e−r(u−t)Q (τ e ∈ du| Ft)

= (φK − φE∞)EQ
£
e−r(τe−t)11{τe<∞}

¯̄
Ft

¤
,(C-1)

where τ e is now the first passage time of the underlying asset price to the constant exercise

boundary. Hence, equation (C-1) shows that the proposed characterization of the American

option converges to the correct perpetual limit for any Markovian underlying price process.

Under the geometric Brownian motion assumption and for φSt > φE∞, solving the

stochastic differential equation (2), for σ (t, S) = σ, and redefining the optimal stopping

time τ e as

τ e = inf {u > t : Su = E∞}

= inf

½
u > t : −φ

σ

µ
r − q − σ2

2

¶
(u− t)− φ

Z u

t

dWQ
v =

φ

σ
ln

µ
St
E∞

¶¾
,
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the dividend-adjusted Merton ((1973), p. 174) solution shown in equation (25) follows after

applying Shreve ((2004), Theorem 8.3.2).

Under the CEV model, the expectation contained on the right-hand side of equation

(C-1) can easily be computed using, for instance, Davydov and Linetsky ((2001), equations

2 and 38), which yields equations (27) and (32) for φ = 1. For the perpetual American

call case (φ = −1), equations (27) and (32) also follow from Davydov and Linetsky ((2001),

equations 4 and 37), and Abramowitz and Stegun ((1972), equations 13.1.27 and 13.1.29).

Appendix D. Proof of Proposition 7

Given that the random variable Θ is independent of F, equation (59) can be rewritten in

terms of the restricted filtration F as long as the short-term interest rate is replaced by an

intensity-adjusted short-rate:

EEP 0
t0
(S,K, T ;φ)(D-1)

= sup
τ∈T

n
EQ
h
e−

τ
t0
(rl+λ(l,S))dl (φK − φSτ)

+ 11{τ0>τ}11{τ<T}

¯̄̄
Ft0

i
−e−

T
t0
rldlEQ

h
e
− T

t0
λ(l,S)dl

(φK − φST )
+ 11{τ0>T}11{τ<T}

¯̄̄
Ft0

io
.

Moreover, since St behaves as a pure diffusion process with respect to the filtration F, then

definition (5) can be adopted for the first passage time of the underlying price process through

the (continuous) early exercise boundary. Hence,

EEP 0
t0 (S,K, T ;φ)(D-2)

= EQ
h
e
− τe

t0
(rl+λ(l,S))dl (φK − φSτe)

+ 11{τ0>τe}11{τe<T}

¯̄̄
Ft0

i
−e−

T
t0
rldlEQ

h
e−

T
t0
λ(l,S)dl (φK − φST )

+ 11{τ0>T}11{τe<T}

¯̄̄
Ft0

i
.
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Concerning the first term on the right-hand side of equation (D-2), the Markovian nature

of the underlying price process implies that

EQ
h
e−

τe
t0
(rl+λ(l,S))dl (φK − φSτe)

+ 11{τ0>τe}11{τe<T}

¯̄̄
Ft0

i
=

Z T

t0

EQ
h
e−

u
t0
(rl+λ(l,S))dl (φK − φSu)

+ 11{τ0>u}11{Su=Eu}

¯̄̄
Ft0

i
Q (τ e ∈ du| Ft0)

=

Z T

t0

e
− u

t0
rldl (φK − φEu)

+ EQ
h
e
− u

t0
λ(l,S)dl

11{τ0>u}

¯̄̄
Ft0

i
Q (τ e ∈ du| Ft0)

=

Z T

t0

e−
u
t0
rldl (φK − φEu)

+ SP (t0, u)Q (τ e ∈ du| Ft0) ,(D-3)

where the last line follows from identity (61).

Using again the Markov property, and since {τ 0 > T} = {inft0≤l≤T (Sl) > 0}, then

e−
T
t0
rldlEQ

h
e−

T
t0
λ(l,S)dl (φK − φST )

+ 11{τ0>T}11{τe<T}

¯̄̄
Ft0

i
= e−

T
t0
rldl

Z T

t0

EQ
h
e−

T
t0
λ(l,S)dl (φK − φST )

+ 11{τ0>T}11{Su=Eu}

¯̄̄
Ft0

i
Q (τ e ∈ du| Ft0)

=

Z T

t0

e−
u
t0
rldlEQ

n
e−

T
u rldlEQ

h
e−

T
u λ(l,S)dl (φK − φST )

+ 11{infu≤l≤T (Sl)>0}
¯̄̄
Su = Eu

i
e−

u
t0
λ(l,S)dl11{inft0≤l≤u(Sl)>0}

¯̄̄
Ft0

o
Q (τ e ∈ du| Ft0) .(D-4)

Additionally, equation (58) implies that

(D-5) e−
T
u rldlEQ

h
e−

T
u λ(l,S)dl (φK − φST )

+ 11{infu≤l≤T (Sl)>0}
¯̄̄
Su = Eu

i
= v0u (E,K, T ;φ) .

Therefore, equations (61) and (D-5) allow equation (D-4) to be rewritten as

e−
T
t0
rldlEQ

h
e−

T
t0
λ(l,S)dl (φK − φST )

+ 11{τ0>T}11{τe<T}

¯̄̄
Ft0

i
(D-6)

=

Z T

t0

e−
u
t0
rldlv0u (E,K, T ;φ)SP (t0, u)Q (τ e ∈ du| Ft0) .

Combining equations (D-3) and (D-6), the pricing solution (60) follows immediately.
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Appendix E. Proof of Proposition 8

Using Carr and Linetsky ((2006), Proposition 5.1), then

Q (Su ≤ Eu|Sl = El) = Q

(
e

u
l αsds

h¯̄
β̄
¯̄
R
(v)
τ(l,u)

i 1

|β̄| ≤ Eu

¯̄̄̄
R
(v)
τ(l,l) =

1¯̄
β̄
¯̄E|β̄|l

)

= Q


h
R
(v)
τ(l,u)

i2
τ (l, u)

≤ k (l, u;Eu)
2

τ (l, u)

¯̄̄̄
¯̄̄R(v)τ(l,l) = k (l, l;El)

 ,(E-1)

where
n
R
(v)
τ(l,u);u ≥ l

o
is a Bessel process of index v and started at R(v)τ(l,l) = k (l, l;El).

For v ≥ 0, i.e. c ≥ 1
2
, Carr and Linetsky ((2006), p. 318) show that the process

R
(v)
τ(l,u)

2

τ(l,u)

possesses a non-central chi-square distribution with 2 (1 + v) degrees of freedom and a non-

centrality parameter equal to its starting value. Consequently,

(E-2) Q (Su ≤ Eu|Sl = El) = 1−Q
χ2 2(v+1),

k(l,l;El)
2

τ(l,u)

Ã
k (l, u;Eu)

2

τ (l, u)

!
,

which is equivalent to equation (64) for v ≥ 0.

If v < 0, then Carr and Linetsky ((2006), Proposition 5.3) can be used with µ = −v, and

equation (E-1) is rewritten as

Q (Su ≤ Eu|Sl = El) = E(−v)k(l,l;El)

µ Rτ(l,u)

k (l, l;El)

¶2v
11(Rτ(l,u))

2

τ(l,u)
≤k(l,u;Eu)2

τ(l,u)




=

·
τ (l, u)

k (l, l;El)
2

¸v
E(−v)k(l,l;El)

Ã¡Rτ(l,u)

¢2
τ (l, u)

!v

11(Rτ(l,u))
2

τ(l,u)
≤k(l,u;Eu)2

τ(l,u)



 ,(E-3)

where the expectation is taken with respect to the law of a Bessel process of index (−v)

and started at k (l, l;El). Since the process
R
(−v)
τ(l,u)

2

τ(l,u)
follows a non-central chi-square law

with 2 (1− v) degrees of freedom and non-centrality parameter k(l,l;El)
2

τ(l,u)
, then equation (E-3)

yields

(E-4) Q (Su ≤ Eu|Sl = El) =

·
τ (l, u)

k (l, l;El)
2

¸v
Φ−

"
v,
k (l, u;Eu)

2

τ (l, u)
; 2 (1− v) ,

k (l, l;El)
2

τ (l, u)

#
,

which agrees with equation (64) for v < 0.
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Table 1: Prices of American Put Options under the Merton (1973) Model, with St0 = $100 and T − t0 = 0.5 years
American put

Option Early exercise boundary specification
parameters Strike Europ. Exact Const. Exp. ExpC. 4d Pol. 5d Pol. CJM HSY2000 HSY10 EXP3

80 0.215 0.219 0.218 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.220
r = 7% 90 1.345 1.386 1.376 1.385 1.386 1.386 1.386 1.386 1.386 1.386 1.387
q = 3% 100 4.578 4.783 4.750 4.778 4.781 4.782 4.782 4.781 4.782 4.782 4.784
σ = 20% 110 10.421 11.098 11.049 11.092 11.097 11.097 11.097 11.095 11.097 11.098 11.099

120 18.302 20.000 20.000 20.000 19.999 19.999 19.999 19.996 20.000 20.002 20.000
80 2.651 2.689 2.676 2.687 2.688 2.688 2.688 2.688 2.689 2.689 2.690

r = 7% 90 5.622 5.722 5.694 5.719 5.721 5.721 5.721 5.720 5.722 5.722 5.724
q = 3% 100 10.021 10.239 10.190 10.233 10.237 10.237 10.237 10.236 10.239 10.238 10.240
σ = 40% 110 15.768 16.181 16.110 16.173 16.180 16.179 16.179 16.177 16.181 16.181 16.183

120 22.650 23.360 23.271 23.350 23.358 23.358 23.358 23.355 23.359 23.359 23.362
80 1.006 1.037 1.029 1.036 1.037 1.037 1.037 1.037 1.037 1.037 1.038

r = 7% 90 3.004 3.123 3.098 3.120 3.122 3.122 3.122 3.122 3.123 3.123 3.125
q = 0% 100 6.694 7.035 6.985 7.029 7.034 7.034 7.034 7.032 7.035 7.035 7.037
σ = 30% 110 12.166 12.955 12.882 12.946 12.953 12.953 12.953 12.951 12.955 12.953 12.957

120 19.155 20.717 20.650 20.710 20.716 20.716 20.716 20.713 20.717 20.718 20.719
80 1.664 1.664 1.664 1.664 1.664 1.664 1.664 1.664 1.664 1.664 1.664

r = 3% 90 4.495 4.495 4.495 4.495 4.495 4.495 4.495 4.495 4.495 4.495 4.495
q = 7% 100 9.251 9.250 9.251 9.251 9.251 9.251 9.251 9.251 9.251 9.251 9.251
σ = 30% 110 15.798 15.798 15.798 15.798 15.798 15.798 15.798 15.798 15.798 15.798 15.798

120 23.706 23.706 23.706 23.706 23.706 23.706 23.706 23.706 23.706 23.706 23.706
Mean Absolute Percentage Error 0.407% 0.054% 0.020% 0.017% 0.015% 0.026% 0.003% 0.005% 0.023%

CPU (seconds) 451.32 0.01 0.03 2.12 8.87 10.07 1.91 3,215.35 0.17 0.08

Table 1 values American put options under the Merton (1973) model and for different specifications of the exercise boundary. The third column

contains European put prices, while the exact American put values (fourth column) are based on the binomial model with 15,000 time steps. The

fifth, sixth and seventh columns report the American put prices associated with the constant, the exponential, and the exponential-constant boundary

specifications, as given by equations (44), (45), and (46). The eighth and ninth columns are both based on a polynomial boundary–see equation (47)–

with four and five degrees of freedom, respectively. The American put prices contained in the tenth column are obtained from the exercise boundary

of equation (48). The next two columns implement the full (with 2,000 time steps) and the 10-point recursive methods of Huang, Subrahmanyam,

and Yu (1996). The last column presents the American put prices generated by the three-point multipiece exponential method of Ju (1998).
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Table 2: Prices of American Put Options under the CEV Model, with β = 3, St0 = $100 and T − t0 = 0.5 years
American put

Option Early exercise boundary specification
parameters Strike Europ. Exact Const. Exp. ExpC. 4d Pol. 5d Pol. CJM DT KY

80 0.159 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162
r = 7% 90 1.255 1.297 1.287 1.296 1.296 1.296 1.296 1.294 1.297 1.297
q = 3% 100 4.579 4.792 4.759 4.787 4.789 4.789 4.790 4.786 4.792 4.791
δ = 0.02 110 10.542 11.215 11.164 11.208 11.213 11.213 11.213 11.209 11.214 11.214

120 18.452 20.025 20.011 20.021 20.023 20.024 20.024 20.024 20.024 20.027
80 2.293 2.331 2.319 2.329 2.330 2.330 2.330 2.329 2.331 2.331

r = 7% 90 5.385 5.491 5.463 5.487 5.489 5.489 5.489 5.486 5.491 5.491
q = 3% 100 10.030 10.262 10.212 10.255 10.260 10.260 10.260 10.256 10.261 10.261
δ = 0.04 110 16.043 16.474 16.401 16.464 16.471 16.471 16.471 16.465 16.472 16.472

120 23.132 23.843 23.751 23.832 23.840 23.840 23.841 23.833 23.839 23.840
80 0.822 0.852 0.844 0.851 0.851 0.851 0.851 0.850 0.851 0.851

r = 7% 90 2.843 2.969 2.944 2.965 2.967 2.967 2.967 2.964 2.968 2.969
q = 0% 100 6.698 7.060 7.008 7.053 7.058 7.058 7.058 7.053 7.060 7.060
δ = 0.03 110 12.371 13.175 13.099 13.165 13.173 13.172 13.173 13.166 13.174 13.172

120 19.493 20.992 20.915 20.982 20.989 20.989 20.990 20.983 20.989 20.993
80 1.419 1.419 1.419 1.419 1.419 1.419 1.419 1.419 1.419 1.419

r = 3% 90 4.311 4.311 4.311 4.311 4.311 4.311 4.311 4.311 4.311 4.311
q = 7% 100 9.254 9.254 9.254 9.254 9.254 9.254 9.254 9.254 9.254 9.254
δ = 0.03 110 15.980 15.980 15.980 15.980 15.980 15.980 15.980 15.980 15.980 15.980

120 23.978 23.978 23.978 23.978 23.978 23.978 23.978 23.978 23.978 23.978
Mean Absolute Percentage Error 0.384% 0.054% 0.023% 0.022% 0.021% 0.064% 0.006% 0.007%

CPU (seconds) 931.30 7.71 10.40 11.21 30.10 34.14 5.29 5,339.28 0.35

Table 2 values American put options under the CEV model and for different specifications of the exercise boundary. The third column contains

European put prices, while the exact American put values (fourth column) are based on the Crank-Nicolson method with 15,000 time intervals

and 10,000 space steps. The fifth, sixth and seventh columns report the American put prices associated with the constant, the exponential, and

the exponential-constant boundary specifications, as given by equations (44), (45), and (46). The eighth and ninth columns are both based on a

polynomial boundary–see equation (47)–with four and five degrees of freedom, respectively. The American put prices contained in the tenth column

are obtained from the exercise boundary specification of equation (48). The last two columns implement the full (with 2,000 time steps) and the

10-point recursive methods of Huang, Subrahmanyam, and Yu (1996), as suggested by Detemple and Tian (2002) and Kim and Yu (1996), respectively.
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Table 3: Prices of American Call Options under the CEV Model, with β = 1, St0 = $100 and T − t0 = 1 year
American call

Option Early exercise boundary specification
parameters Strike Europ. Exact Const. Exp. ExpC. 2d Pol. 3d Pol. CJM DT KY

80 23.370 23.370 23.370 23.370 23.370 23.370 23.370 23.370 23.370 23.373
r = 7% 90 15.735 15.735 15.735 15.735 15.735 15.735 15.735 15.735 15.735 15.732
q = 3% 100 9.635 9.635 9.635 9.635 9.635 9.635 9.635 9.635 9.635 9.626
δ = 2 110 5.315 5.315 5.315 5.315 5.315 5.315 5.315 5.315 5.315 5.306

120 2.630 2.630 2.630 2.630 2.630 2.630 2.630 2.630 2.630 2.625
80 28.249 28.254 28.253 28.253 28.253 28.253 28.253 28.254 28.254 28.243

r = 7% 90 22.204 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.205 22.183
q = 3% 100 17.083 17.083 17.083 17.083 17.083 17.083 17.083 17.083 17.083 17.053
δ = 4 110 12.870 12.870 12.870 12.870 12.870 12.870 12.870 12.870 12.870 12.835

120 9.499 9.499 9.499 9.499 9.499 9.499 9.499 9.499 9.499 9.465
80 28.022 28.022 28.022 28.022 28.022 28.022 28.022 28.022 28.022 28.023

r = 7% 90 21.061 21.061 21.061 21.061 21.061 21.061 21.061 21.061 21.061 21.051
q = 0% 100 15.221 15.221 15.221 15.221 15.221 15.221 15.221 15.221 15.221 15.201
δ = 3 110 10.567 10.567 10.567 10.567 10.567 10.567 10.567 10.567 10.567 10.542

120 7.047 7.047 7.047 7.047 7.047 7.047 7.047 7.047 7.047 7.024
80 20.301 21.882 21.794 21.871 21.801 21.879 21.879 21.878 21.881 21.871

r = 3% 90 14.257 15.187 15.100 15.175 15.105 15.184 15.184 15.184 15.186 15.164
q = 7% 100 9.552 10.084 10.015 10.074 10.018 10.081 10.081 10.082 10.082 10.058
δ = 3 110 6.106 6.401 6.353 6.394 6.354 6.398 6.398 6.400 6.400 6.380

120 3.728 3.886 3.855 3.881 3.856 3.884 3.884 3.885 3.885 3.875
Mean Absolute Percentage Error 0.161% 0.024% 0.154% 0.009% 0.009% 0.005% 0.005% 0.162%

CPU (seconds) 912.31 5.60 7.07 5.60 9.94 10.84 3.87 5,690.36 0.49

Table 3 values American call options under the CEV model and for different specifications of the exercise boundary. The third column contains

European call prices, while the exact American call values (fourth column) are based on the Crank-Nicolson method with 15,000 time intervals

and 10,000 space steps. The fifth, sixth and seventh columns report the American call prices associated with the constant, the exponential, and the

exponential-constant boundary specifications, as given by equations (44), (45), and (46). The eighth and ninth columns are both based on a polynomial

boundary–equation (47)–with two and three degrees of freedom, respectively. The American call prices contained in the tenth column are obtained

from the exercise boundary specification of equation (48). The last two columns implement the full (with 2,000 time steps) and the 10-point recursive

methods of Huang, Subrahmanyam, and Yu (1996), as suggested by Detemple and Tian (2002) and Kim and Yu (1996), respectively.
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Table 4: Accuracy of the Polynomial Specification for a Large Sample of Randomly Generated American Puts
Polynomial specifications KY

2nd degree 3rd degree 4th degree 5th degree 6th degree
Percentage Errors

mean -0.0291% -0.0226% -0.0200% -0.0179% -0.0147% 0.0068%
maximum 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.3953%
minimum -0.1691% -0.1162% -0.1071% -0.1003% -0.0902% -0.0563%

99th percentile 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.1898%
1st percentile -0.1308% -0.1037% -0.0949% -0.0889% -0.0758% -0.0480%

Absolute Percentage Errors
mean 0.0291% 0.0226% 0.0200% 0.0179% 0.0147% 0.0158%

maximum 0.1691% 0.1162% 0.1071% 0.1003% 0.0902% 0.3953%
minimum 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

99th percentile 0.1308% 0.1037% 0.0949% 0.0889% 0.0758% 0.1898%

Table 4 reports the pricing errors associated with the valuation of 1,250 randomly generated American put options, under the CEV model and through

different polynomial parameterizations of the exercise boundary, as given by equation (47). For comparison purposes, the last column contains the

pricing errors associated with the 10-point recursive scheme of Huang, Subrahmanyam, and Yu (1996), as suggested by Kim and Yu (1996). The strike

price is always set at $100 while the other option features were generated from uniform distributions and within the following intervals: instantaneous

volatility between 10% and 60%; interest rate and dividend yield between 0% and 10%; underlying spot price between $70 an $130; beta between 0

and 4.0; and time-to-maturity ranging from 0 to 3.0 years. The pricing errors produced by the alternative boundary specifications were computed

against the Crank-Nicolson method with 15,000 time intervals and 10,000 space steps.
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Table 5: American Put Options under the JDCEV Model, with β̄ = −0.5, c = 0.5, b = 0.02, St0 = $100 and T − t0 = 5 years
Option European put American put

parameters Strike v0t0 vDt0 vt0 EEP 0
t0

V 0
t0

V D
t0

Vt0
80 1.095 9.772 10.866 1.005 2.100 11.602 13.702

r = 7% 90 1.842 10.993 12.835 2.098 3.940 13.053 16.992
q = 3% 100 2.895 12.215 15.110 4.129 7.024 14.503 21.527
a = 2 110 4.302 13.436 17.739 7.697 11.999 15.953 27.953

120 6.098 14.658 20.756 13.425 19.523 17.404 36.927
80 1.797 22.017 23.814 5.599 7.397 26.818 34.215

r = 7% 90 2.504 24.769 27.273 7.853 10.358 30.170 40.528
q = 3% 100 3.358 27.521 30.879 10.757 14.115 33.523 47.638
a = 4 110 4.363 30.273 34.636 14.430 18.793 36.875 55.668

120 5.525 33.025 38.550 18.973 24.498 40.227 64.726
80 1.400 14.570 15.970 2.590 3.990 17.688 21.678

r = 7% 90 2.054 16.391 18.445 4.247 6.301 19.899 26.200
q = 0% 100 2.884 18.213 21.096 6.752 9.636 22.110 31.746
a = 3 110 3.906 20.034 23.940 10.425 14.331 24.321 38.652

120 5.134 21.855 26.989 15.504 20.637 26.532 47.170
80 5.385 21.080 26.465 3.857 9.242 22.785 32.027

r = 3% 90 7.496 23.715 31.212 5.340 12.836 25.633 38.469
q = 7% 100 10.001 26.351 36.352 7.172 17.173 28.481 45.654
a = 3 110 12.891 28.986 41.877 9.392 22.283 31.329 53.612

120 16.148 31.621 47.768 12.045 28.193 34.177 62.370

Table 5 values American put options under a time-homogeneous JDCEV model, and for the parameter values considered in Table 3. The third

column contains European put prices, conditional on no default, as given by equation (58). The fourth column reports the recovery component of

the European put contract, which is computed from Carr and Linetsky ((2006), eq. 3.11), and the fifth column yields the sum of the previous two

components. The early exercise premium (sixth column) is computed through Propositions 7 and 8, using a polynomial specification for the exercise

boundary with four degrees of freedom. The seventh, eighth and ninth columns are given by equations (57), (56) and (54), respectively.

47


