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Abstract

The Duffie and Kan (1996) model, which can be considered as the most general affine term structure

formulation, was originally specified in terms of risk-adjusted stochastic processes for its state

variables. The goal of the present paper is to derive a Duffie and Kan (1996) model’ specification

under the physical probability measure that is compatible with the formulation given by the authors

under the equivalent martingale (“money market account”) measure. For that purpose, the Duffie

and Kan (1996) model will be fitted into a general equilibrium monetary framework. The resulting

analytical solution for the vector of factor’ risk premiums enables the econometric estimation of the

model’ parameters using a “time-series” or a “panel-data” approach, and nests, as special cases,

several other specifications already proposed in the literature.

JEL Classification E43, G11, G12

Keywords Affine term structure models, Change of measure, Feynman-Kač solution, Cash-in-

advance models, Power utility, Log utility
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1 Introduction

The Duffie and Kan (1996) model of the term structure of interest rates possesses, at least, three ap-

pealing features. First, this model is constructed under realistic assumptions, since it incorporates

mean reversion, and accommodates both deterministic (Gaussian models) and stochastic volatility

specifications. Second, the Duffie and Kan (1996) model is an extremely general framework be-

cause it embodies as special cases a large number of well known models previously presented in the

literature, such as: Vasicek (1977), Langetieg (1980), Cox, Ingersoll and Ross (1985b), Longstaff

and Schwartz (1992a), Fong and Vasicek (1991b), or Chen and Scott (1995). In fact, the Duffie

and Kan (1996) specification can be considered as the most general exponential-affine1 and time-

homogeneous multifactor term structure model. Finally, the Duffie and Kan (1996) model is also

numerically tractable because it generates an exponential-affine discount bond valuation formula

(although, under the most general stochastic volatility case, the time-dependent functions involved

in this formula can only be recovered through the numerical solution of a system of Riccati differ-

ential equations).

The Duffie and Kan (1996) model was originally defined not under physical probabilities but in

terms of risk-adjusted stochastic processes for its state variables, i.e. with respect to a martingale

measure Q which can be understood as the probability measure obtained when a “money market

account” is taken as the numeraire of the stochastic intertemporal economy underlying the model

under analysis.

The goal of the present paper is to derive a Duffie and Kan (1996) model’ specification under

the physical probability measure P that is compatible with the formulation given by the authors

under the equivalent martingale measure Q. This task can become useful for empirical purposes,

namely for the econometric estimation of the Duffie and Kan (1996) model’ parameters from a

1An affine form corresponds to a constant plus a linear function.
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time-series of state variables’ values or from a panel-data of market observables (e.g. bond prices),

through Kalman filtering techniques. These parameters can also be estimated from a cross-section

of bond prices by using the risk-adjusted processes for the state variables (that is, through the

best fit between market bond prices and those generated by the model), since assuming that there

are no arbitrage opportunities in the bond market is equivalent to say that such interest rate

contingent claims can be priced under an equivalent martingale measure Q. However, this latter

methodology should be less adequate than the time-series or panel-data approaches, because the

model’ parameters are assumed to be time-independent. In summary, if the Duffie and Kan (1996)

model’ parameters are to be estimated through a time-series or a panel-data methodology, the

knowledge of the model’ specification under the physical probability measure P is then required,

and thus justifies the purpose of this paper. As Duffie and Kan (1994, page 578) notice: “For

many applications, it will also be useful to model the distribution of processes under the original

probability measure P. Conversion from P to Q and back will not be dealt with here, but is an

important issue, particularly from the point of view of statistical fitting of the models as well as

the measurement of risk.”

For this purpose, the Duffie and Kan (1996) model will have2 to be fitted into a general equilib-

rium framework, where both the short-term interest rate and the vector of market prices of risk will

be endogenously determined in the context of the underlying economy. And, unlike the majority

of the general equilibrium term structure models found in the literature, the role of money is going

to be explicitly considered (through a cash-in-advance constraint), leading to a general equilib-

2Alternatively, a reduced form approach can be implemented -see, for instance, Dai and Singleton (2000, equation

8)- where the functional form for the vector of market prices of risk is exogenously specified, in order to maintain

the analytical tractability of the term structure model. Since the present paper pursues, instead, an endogenous

approach, it will be possible to highlight the links between the economic fundamentals and the term structure model

under analysis.
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rium Duffie and Kan (1996) model of the term structure of nominal interest rates. Therefore, the

proposed general equilibrium setup is in the spirit of, for example, the stochastic and continuous-

time cash-in-advance monetary economies considered, for instance, by Bakshi and Chen (1997b) or

Rebelo and Xie (1999).

Nevertheless, several intermediate results that will be used hereafter will be borrowed from

many general equilibrium term structure models already presented in the literature. This is the

case for the pioneer works of Cox, Ingersoll and Ross (1985a) and Cox et al. (1985b), under a

non-monetary production type economy and a log utility function, where a general equilibrium

specification was found for the term structure of real interest rates. Although such approach has

been undertaken for a single (short term square root) diffusion process, it can be easily extended to

more than one source of risk: see, for instance, Longstaff and Schwartz (1992a). Still using a non-

monetary but pure exchange economy, Goldstein and Zapatero (1996) found a general equilibrium

specification for the Vasicek (1977) model which is based in less restrictive assumptions about

preferences, since a power utility function is adopted. Also using a pure exchange economy setup

but under both power and exponential utility functions, Bakshi and Chen (1997a) derived a two-

factor square-root real term structure model. However and in contrast with the majority of the

empirical research which is based on nominal asset prices, all the previous studies yielded real

instead of nominal term structures of interest rates. Hence, several authors have tried to extend

the previous approaches towards a monetary economy. For instance, Bakshi and Chen (1996)

consider a domestic and discrete-time monetary economy by incorporating money (for transaction

purposes) as an argument of the investor’s utility function. Alternatively, Bakshi and Chen (1997b)

propose a two-country continuous-time and monetary economy, where both the aggregate output

and money supply processes are exogenously specified. This latter approach will be pursued in the

present paper.
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Next sections are organized as follows. Section 2 presents a brief summary of the Duffie and Kan

(1996) model under its known risk-neutral specification. Section 3 states all the assumptions that

are required to fit the Duffie and Kan (1996) model into a general equilibrium framework. In sections

4, 5 and 6, general formulae for the equilibrium short-term interest rate and for the equilibrium

factor risk premiums are derived, always in nominal terms: first, within the context of a production

economy; then, under a consumption-based CAPM; and finally, assuming a pure exchange economy.

In section 7, a general equilibrium Duffie and Kan (1996) model is derived under a constant relative

risk aversion economy (both with power and log utility functions). Finally, Section 8 summarizes

the conclusions. All accessory proofs are relegated to the appendix.

2 Duffie and Kan (1996) model: a summary

2.1 General formulation

Duffie and Kan (1996) start by considering that, under the physical probability measure P , the

vector of state variables X (t) satisfies a stochastic differential equation (SDE) of the generic form:

dX (t) = v [X (t)] dt+ σ [X (t)] · dWP (t) , (1)

where v [X (t)] ∈ <n and σ [X (t)] ∈ <n×n satisfy the Lipschitz and growth conditions required for

a unique solution to exist for equation (1),3 while WP (t) ∈ <n is a standard Brownian motion

under P . Then, they argue that it is always possible to derive a probability martingale measure

Q equivalent to P (that is mutually absolutely continuous) and a standard Q-measured Brownian

motion WQ (t) ∈ <n (with the same standard filtration as WP (t)), such that:

dX (t) = µ [X (t)] dt+ σ [X (t)] · dWQ (t) (2)

and where µ [X (t)] ∈ <n is a compatible function of v [X (t)], σ [X (t)] and P (t, T ),4 in the sense
3And stated, for instance, in Lamberton and Lapeyre (1996, theorem 3.5.5)
4P (t, T ) denotes the time-t price of a default-free zero-coupon bond expiring at time T (≥ t).
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that this change of drift guarantees the absence of arbitrage opportunities5 and also preserves an

exponential-affine specification for pure discount bond prices. Finally, Duffie and Kan (1996) define

what they call a
¡
P,µ,σ

¢
compatible term structure model by specifying an exponential-affine form

for P (t, T ) and affine formulae for both µ [X (t)] and σ [X (t)] · σ [X (t)]0, where σ [X (t)]0 denotes

the transpose of σ [X (t)].

In order to derive the Duffie and Kan (1996) model’ specification under the probability measure

P, it will be necessary to fit the model into a general equilibrium framework. This is so because,

from Girsanov’s Theorem, the two model specifications (under probability measures P and Q) are

only compatible if µ [X (t)] and WQ (t) are such that:

µ [X (t)] = v [X (t)]− σ [X (t)] ·Λ [X (t)]

and

dWQ (t) = Λ [X (t)] dt+ dWP (t) ,

where Λ [X (t)] ∈ <n, which can be interpreted as the time-t vector of market prices of interest rate

risk, defines the Radon-Nikodym derivative

dQ
dP

¯̄̄̄
Ft := exp

½
−
Z t

0

Λ [X (s)]0 · dWP (s)− 1
2

Z t

0

Λ [X (s)]0 · Λ [X (s)] ds
¾
.

Hence, to go from the Duffie and Kan (1996) model specification under the physical probability

measure P -hereafter labelled as the (P, v,Λ,σ) model- to the
¡
P,µ,σ

¢
equivalent specification, or

all the way around, it will be necessary to define Λ [X (t)] explicitly.

5Meaning that the relative prices of all assets with respect to the numeraire given by a “money market account”

are Q-martingales. The time-t value of such “savings account”, δ (t), corresponds to the compounded value of one

monetary unit continuously reinvested, from time 0 to time t, at the short-term interest rate r (t):

δ (t) := exp

·Z t

0

r (s)ds

¸
.
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2.2 Original specification

The Duffie and Kan (1996) model imposes an exponential-affine form for the price of a riskless

(unit face value) pure discount bond, that is

P (t, T ) = exp
£
A (τ) +B0 (τ) ·X (t)

¤
, (3)

where P (t, T ) represents the time-t price of a default-free pure discount bond expiring at time

T , τ = T − t is the time-to-maturity of the zero-coupon bond, · denotes the inner product in

<n, and X (t) ∈ <n is the time-t vector of state variables. In order to respect the boundary

condition P (T, T ) = 1, the time-homogeneous functions A (τ) ∈ < and B (τ) ∈ <n must be such

that A (0) = 0 and B (0) = 0. Moreover, the function P (t, T ) is assumed to be continuously

differentiable in the time-to-maturity and twice continuously differentiable in the state-vector.

Alternatively to zero-coupon bond prices, the model can be equivalently specified in terms of

the riskless instantaneous spot interest rate. Because A (·) and B (·) are continuously differentiable

(since it is assumed that P (t, T ) ≡ P (X (t) ; τ) ∈ C2,1 (D× [0,∞[), where D ⊆ <n represents

the admissible domain of the model’ state variables), it follows from equation (3) that the time-t

short-term interest rate r (t) is an affine function of the n factors:

r (t) = lim
τ→0

·
− lnP (t, T )

τ

¸
= f +G0 ·X (t) , (4)

where f = − ∂A(τ )
∂τ

¯̄̄
τ=0
, and the ith element of vector G ∈ <n is defined as gi = − ∂Bi(τ )

∂τ

¯̄̄
τ=0
, being

Bi (τ) the ith element of vector B (τ).

Concerning the dynamics of the model’ factors, Duffie and Kan (1996) assume that the n state

variables follow, under a martingale measure Q, a parametric Markov diffusion process, where the

drift and the variance of these risk-adjusted stochastic processes also have an affine form in order
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to support6 the exponential-affine specification of equation (3):

dX (t) = [a ·X (t) + b] dt+Σ ·
q
V D (t) · dWQ (t) ,X (t) ∈ D, (5)

where a,Σ ∈ <n×n, b ∈ <n,

q
V D (t) := diag

np
v1 (t), . . . ,

p
vn (t)

o
,

vi (t) := αi + βi
0 ·X (t) , for i = 1, ..., n,

αi ∈ <, βi ∈ <n, WQ (t) ∈ <n is a vector of n independent Brownian motions under measure Q,

and

D =
n
X ∈ <n : αi + βi

0 ·X ≥ 0, i = 1, . . . , n
o

(6)

is the admissible domain of the model’ state variables. Notice that this model specification incor-

porates mean reversion (X (t) mean reverts towards a−1 ·b, as long as matrix a is negative definite),

and accommodates both deterministic (if βi = 0,∀i) or stochastic volatility (if ∃i : βi 6= 0) formu-

lations. Hereafter, condition A of Duffie and Kan (1996, page 387) will be always assumed, which

ensures that a unique (strong) solution X (t) ∈ D exists for the SDE (5).

Equations (3) -or (4)- and (5) summarize the most general stochastic volatility specification

of the Duffie and Kan (1996) model (since βi is not constrained to be equal to 0, for all i).

Applying Itô’s lemma, it follows that, under this general specification, the time-t price, Y [X (t) , t] ∈

C2,1 (D× [0,∞[), of an interest rate contingent claim, with a continuous “dividend yield” i [X (t) , t],

must satisfy the following fundamental parabolic partial differential equation (PDE), subject to the

appropriate boundary conditions:

DY (x, t) + ∂Y (x, t)

∂t
− r (t)Y (x, t) = −i (x, t) , x ∈ D, (7)

6As Duffie and Kan (1996, page 381) say: “...the yields are affine if, and essentially only if, the drift and diffusion

functions of the stochastic differential equation for the factors are also affine”. This result is equivalent to proposition

4 of Brown and Schaefer (1994), derived in the context of one-factor affine models.
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being D the second-order differential operator7

DY (x, t) := ∂Y (x, t)

∂x0
· [a · x+ b] + 1

2
tr

·
∂2Y (x, t)

∂x∂x0
· Σ · V D (t) · Σ0

¸
,

with V D (t) := diag {v1 (t) , . . . , vn (t)}, and where the function tr (·) returns the trace of a square

matrix. However, and as Duffie and Kan (1994) point out, PDE (7) can only be solved, for path-

independent interest rate contingent claims, by a finite-difference method or, for large n, by Monte

Carlo simulation. The only exception seems to be the valuation of default-free pure discount bonds,

for which an exact quasi-closed form solution is provided by Duffie and Kan (1996). Using equations

(3.9) and (3.10) of Duffie and Kan (1996),8 first the duration vector B0 (τ) must be found through

the solution of a system of n Riccati differential equations (for instance, by using a fifth order

Runge-Kutta method),

∂

∂τ
B0 (τ) = −G0 +B0 (τ) · a+ 1

2

nX
k=1

 nX
j=1

Bj (τ) εjk

2 βk0, (8)

subject to the initial condition B (0) = 0, and where εjk is the jth-row kth-column element of matrix

Σ. Then, A (τ) is obtained through the solution of a first order ordinary differential equation (for

instance, by using Romberg’s integration method),

∂

∂τ
A (τ) = −f +B0 (τ) · b+ 1

2

nX
k=1

 nX
j=1

Bj (τ) εjk

2 αk, (9)

subject to the initial condition A (0) = 0. Finally, P (t, T ) is given by equation (3). However, under

this general specification of the Duffie and Kan (1996) model, even the above ODEs must be solved

numerically.

7As defined in Arnold (1992, definition 2.6.1). Its relation with the infinitesimal generator of X (t), A, is the

following:

A = ∂

∂t
+D.

8Or substituting Y (x, t), in PDE (7), by equation (3), subject to the boundary condition P (T, T) = 1.
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The main advantage of the Duffie and Kan (1996) framework is its generality: all time-

homogeneous exponential-affine diffusion models presented in the literature can be easily nested into

the specification given by equations (4) and (5), through self-evident parameters’ restrictions (Table

1 illustrates some examples). Therefore, the general equilibrium setup that will be constructed in

the present paper is also applicable to any of such models.

3 General equilibrium assumptions

The following assumptions represent a synthesis between the consumption-based CAPM of Breeden

(1979), the continuous-time pure exchange economy of Lucas (1978), and the cash-in-advance one-

country economy of Lucas (1982), while the notation is intended to follow that used by Cox et al.

(1985a):

A.1) There is a single physical good, which can be allocated to consumption or investment.

A.2) The stochastic intertemporal one-country economy that is going to be considered has a finite

time horizon T = [0, T ]. Uncertainty is represented by a complete filtered probability space¡
Ω,F , (Ft)t∈T ,P

¢
, where all the information accruing to all the agents in the economy is

described by a filtration (Ft)t∈T satisfying the usual conditions: namely, F0 = {∅,Ω} and

FT = F . The vector WP (t) ∈ <n will represent a standard Brownian motion on the prob-

ability space (Ω,F ,P), and F = {Ft : t ≥ 0} will denote the P−augmentation of the natural

filtration generated by WP (t).

A.3) There are n state variables that determine the general state of the economy (both in real and

monetary terms) through the following stochastic process, and under the probability measure

P:

dX (t) =
£
ā ·X (t) + b̄

¤
dt+Σ ·

q
V D (t) · dWP (t) , (10)
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where ā ∈ <n×n, b̄ ∈ <n, and dWP (t) ∈ <n is a vector of n independent Brownian increments

under the physical probability measure. Hence, ν [X (t)] = ā · X (t) + b̄ and σ [X (t)] =

Σ ·
p
V D (t). This stochastic differential equation is intended to represent the non-risk-

adjusted stochastic process followed by the state variables of the Duffie and Kan (1996)

model. Thus, the diffusion is the same as in equation (5), and the drift was defined as another

affine function of the n factors (ensuring consistency with the exponential-affine form for pure

discount bond prices). The goal is precisely to determine a consistent relation between a and

ā as well as between b and b̄.

A.4) There exist m distinct production processes (or production firms) that define m investment

opportunities in the economy, whose dynamics are modelled through the following SDE:

dS (t) = IS (t) · µS (q,M,S,X, t) dt+ IS (t) · E (q,M,S,X, t) · dWP (t) . (11)

The ith element of S (t) ∈ <m, denoted by Si (t), represents the nominal value of the ith

production firm at time t, IS (t) := diag {S1 (t) , . . . , Sm (t)} and therefore the production

processes have stochastically constant returns to scale, µS (q,M,S,X, t) ∈ <m is the vector

of expected rates of return on the production activities, E (q,M, S,X, t) ∈ <m×n is assumed

to be such that E (q,M,S,X, t) ·E (q,M,S,X, t)0 is positive definite, q (t) denotes the time-t

aggregate output of the economy, and M (t) represents the time-t money supply level. Each

firm’ value is represented by just one (perfectly divisible) share, i.e. Si (t) can be though of

as being the value of the ith production firm share.

A.5) The real aggregate production output is exogenously determined by the following diffusion

process:

dq (t)

q (t)
= µq (q,X, t)dt+ σq (q,X, t)

0 · dWP (t) , (12)
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where µq (q, X, t) ∈ < is the time-t expected rate of change in the aggregate output, and

σq (q, X, t) ∈ <n is the vector of volatilities for the rate of change in the aggregate output.

Assumption A.5 corresponds to the main difference between the pure exchange economy

considered here and the Cox et al. (1985a) type of production economy.

A.6) The money supply is exogenously determined by the following diffusion process:

dM (t)

M (t)
= µM (M,X, t)dt+ σM (M,X, t)

0 · dWP (t) , (13)

where µM (M,X, t) ∈ < is the time-t expected growth rate of money supply, and σM (M,X, t)

∈ <n is the vector of volatilities for the money supply growth rate.

A.7) There are (n−m) infinitely divisible (non-redundant) financial contingent claims, whose

net supply is zero, and whose nominal value evolves accordingly to the following stochastic

process:

dF (t) = IF (t) · µF (q,M,S,X, t) dt+ IF (t) ·H (q,M,S,X, t) · dWP (t) , (14)

where the ith element of F (t) ∈ <n−m, denoted by Fi (t), represents the time-t price of the

ith contingent claim, IF (t) := diag {F1 (t) , . . . , Fn−m (t)}, µF (q,M,S,X, t) ∈ <n−m is the

vector of expected rates of return (dividend-inclusive) on the (n−m) financial contingent

claims, and H (q,M,S,X, t) ∈ <(n−m)×n.

A.8) There are no taxes or transaction costs, and all trades take place at equilibrium prices.

A.9) There exists a market for instantaneous borrowing and lending at a nominal risk-free interest

rate of r (t).

A.10) There exists a fixed number of individuals, all identical in terms of their endowments and

preferences, and all having homogeneous probability beliefs about future states of the world.
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Thus, it can be automatically assumed that markets are dynamically complete, because as

stated in Cox, Ingersoll and Ross (1981, page 779): “For an economy of identical investors,

prices will be set as if markets were complete, regardless of their actual scope”. Moreover, each

individual seeks to maximize the expected value of a time-additive and state-independent von

Neumann-Morgenstern utility function for lifetime consumption, that is wishes to maximize

the quantity

EPt

(Z T

t
u [C (s) , s] ds

¯̄̄̄
V (t) = v =

mX
i=1

Si (t) ∧ X (t) = x
)
,

where t denotes the current time, T represents the terminal date, the expectation EPt (·) is

taken conditionally onFt and computed under measure P , u [·] is a von Neumann-Morgenstern

period utility function, C (s) represents the amount of the single physical good consumed at

time s, and x denotes the current state of the economy. V (t) is the time-t (i.e. current)

pre-decision nominal wealth, since it is being assumed that the initial endowment of the

representative agent corresponds to one share of each production firm.

A.11) The unit-velocity version of the Quantity Theory of Money will be assumed hereafter; that

is,

M (t)

p (t) q (t)
= 1, (15)

where p (t) is the time-t price level for the single physical good. Such working hypothesis is

just a consequence of the following three underlying assumptions:

A.11.1) In the economy under analysis all agents are subject to a cash-in-advance constraint (also

known as the Clower constraint), in the sense that all goods can be purchased only with

currency accumulated in advance; i.e.,

N (t) = p (t)C (t) , (16)
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where N (t) is the time-t demand for money. This constraint justifies the existence of money

in the economy because, as argued by Lucas (1982, page 342): “...agents will hold non-

interest-bearing units of that currency in exactly the amount needed to cover their perfectly

predictable current-period goods purchases”.9 Instead, one could have considered, for in-

stance, the existence of real cash balances in the direct utility function, while assuming that

q (t) and M (t) were the only state variables, as done by Bakshi and Chen (1996). Although

such procedure would be more realistic, it would also create two problems: first, the choice

of state variables would not be consistent with the Duffie and Kan (1996) model specification

under analysis; second, the derivation of a closed-form expression for Λ [X (t)] would require

the use of a log utility function, restricting the type of preferences under consideration.

A.11.2) In equilibrium, the money supply equals the demand for money:

M (t) = N (t) . (17)

A.11.3) In the pure exchange economy under analysis, all output is consumed:

C (t) = q (t) . (18)

Combining equations (16), (17), and (18), equation (15) follows immediately.

Initially, assumption A.5 will be ignored, i.e. a Cox et al. (1985a) type of production economy

will be considered, but the results obtained are going to depend on the indirect utility function.

Then, this paper will move towards the consumption-based CAPM of Breeden (1979), obtaining

results that depend on the direct utility function but are still related to the endogenous consumption
9One can only be sure that the cash-in-advance constraint (16) binds if the term structure model is defined under

the stochastic volatility specification of equation (10). In fact, it is well known -see, for instance, Rogers (1996)- that

for deterministic volatility formulations, nominal interest rates can attain negative values with positive probability

and, therefore, agents can no longer face an opportunity cost for holding money.
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process. Finally and following Bakshi and Chen (1997b), assumption A.5 will be imposed, a pure

exchange economy will be completely identified, and all the relevant results will be stated in terms

of the utility of consumption and as a function of the exogenous output and money supply processes

(therefore avoiding the need to solve the Hamilton-Jacobi-Bellman equation for the utility of wealth

or for the endogenous consumption process). Consequently, it will be possible to consider a general

equilibrium framework based on preference assumptions more realistic than those implied by the

usual log utility of consumption. Moreover, since a monetary economy is considered, the general

equilibrium Duffie and Kan (1996) model specification that will emerge is a term structure model

of nominal interest rates.

4 Portfolio selection problem

4.1 The budget constraint

The representative agent in the economy can choose amongst three different types of investment

opportunities: i) To trade the equity shares issued by the m production firms; ii) To trade (m− n)

financial contingent claims; and iii) To buy or sell instantaneous nominal risk-free zero-coupon

bonds.

Hence, the representative agent must observe the following budget constraint, where, for clarity,

all functional dependencies, except time-dependencies, will be suppressed:

dV (t) = V (t)ωS (t)
0 · I−1S (t) · dS (t) + V (t)ωF (t)0 · I−1F (t) · dF (t) (19)

+V (t)
h
1− ωS (t)

0 · 1n − ωF (t)
0 · 1n−m

i
r (t)dt− p (t)C (t)dt,

where the ith element of ωS (t) ∈ <m is the proportion of the current wealth invested in the ith

production firm, the ith element of ωF (t) ∈ <n−m is the proportion of the current wealth invested

in the ith financial contingent claim, r (t) is the instantaneous nominal risk-free time-t interest rate,
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and 1l ∈ <l is a unit vector for any natural number l. Considering equations (11) and (14), the

above stochastic differential equation can be restated as:

dV (t) =
n
ωS (t)

0 ·
h
µS (t)− r (t) 1n

i
V (t) + ωF (t)

0 ·
h
µF (t)− r (t) 1n−m

i
V (t) (20)

+V (t) r (t)− p (t)C (t)}dt+ V (t)
£
ωS (t)

0 · E (t) + ωF (t)
0 ·H (t)

¤
· dWP (t) .

4.2 The HJB equation

The individual’s portfolio selection problem consists in choosing a policy for investment and con-

sumption, i.e. choosing the controls
¡
ωS (t) ,ωF (t) , C (t)

¢
≡
¡
ωS,ωF , C

¢
, so as to maximize the

expected utility from consumption, subject to the budget constraint (20). In other words, the

representative agent has to find
¡
ωS,ωF , C

¢
such that:10

J (v, x, t) = max
(ωS ,ωF ,C)

KωS ,ωF ,C (v, x, t) , (21)

where

KωS ,ωF ,C (v, x, t) := EPt

½Z T

t
u [C (s) , s] ds

¯̄̄̄
V (t) = v ∧X (t) = x

¾
,

being dv given by equation (20) and dx described by equation (10).

The Hamilton-Jacobi-Bellman equation for the above stochastic optimal control problem is:

max
(ωS ,ωF ,C)

φ
¡
ωS,ωF , C; v, x, t

¢
= 0, (22)

with

φ
¡
ωS ,ωF , C; v, x, t

¢
:= u (C, t) +

¡
LωS ,ωF ,CJ

¢
(v, x, t) ,

and where the Dynkin’s operator is equal to11

¡
LωS ,ωF ,CJ

¢
(v, x, t)

10J(v, x, t) represents the indirect utility function of the representative agent, expressed in terms of the nominal

wealth. Although the direct utility function is assumed to be state-independent, we can not be sure in saying the

same about the indirect utility function because r(t) changes stochastically.
11 In order to simplify the notation, subscripts will be used hereafter to represent derivatives.
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= Jt +
n
ωS

0 ·
h
µS (t)− r (t) 1n

i
v+ ωF

0 ·
h
µF (t)− r (t) 1n−m

i
v + r (t) v − p (t)C (t)

o
Jv

+Jx0 ·
¡
ā · x+ b̄

¢
+
v2Jvv
2

£
ωS

0 · E (t) + ωF
0 ·H (t)

¤
·
£
E (t)0 · ωS +H (t)0 · ωF

¤
+
1

2
tr
£
Jxx0 ·Σ · V D (t) · Σ0

¤
+ v

£
ωS

0 · E (t) + ωF
0 ·H (t)

¤
·
q
V D (t) ·Σ0 · Jvx,

with Jx :=
∂J(v,x,t)

∂x , Jxx0 :=
∂2J(v,x,t)
∂x∂x0 , and Jvx :=

∂2J(v,x,t)
∂v∂x , subject to the non-negativity restric-

tions ωSi ≥ 0 (i = 1, . . . ,m) and C ≥ 0, as well as to the boundary condition J (v, x, T) = 0.

Using the Kuhn-Tucker Theorem, the necessary and sufficient conditions for the maximization

of φ
¡
ωS ,ωF , C; v, x, t

¢
are:

uC (t)− p (t)Jv ≤ 0, (23)

[uC (t)− p (t) Jv]C = 0, (24)

φωS =
£
E (t) · E (t)0 · ωS + E (t) ·H (t)0 · ωF

¤
v2Jvv (25)

+
h
µS (t)− r (t) 1n

i
vJv + vE (t) ·

q
V D (t) · Σ0 · Jvx

≤ 0,

ωS
0 · φωS = 0, (26)

and

φωF =
£
H (t) ·H (t)0 · ωF +H (t) ·E (t)0 · ωS

¤
v2Jvv (27)

+
h
µF (t)− r (t) 1n−m

i
vJv + vH (t) ·

q
V D (t) · Σ0 · Jvx

= 0.

5 The equilibrium instantaneous nominal risk-free interest rate

As in Cox et al. (1985a), equilibrium is defined by a set of stochastic processes
³
r (t) , µF (t) ;

ωS,ωF , C
¢
satisfying conditions (23) to (27), as well as the following market clearing conditions:

18



1. In equilibrium, all wealth is invested in the physical production processes, that is ωS 0 ·1n = 1.

2. In equilibrium, no financial contingent claims are held, i.e. ωF = 0. That is, in equilibrium the

net supply or aggregate demand for each financial contingent claim is zero. This is because for

each individual who demands some security, there is always another individual that creates

and sells it.

The aim of the current section is to compute, explicitly, an equilibrium formula for r (t), in the

context of the Duffie and Kan (1996) model. Initially, a production economy will be used, and

the results obtained will be similar to those already generated by Cox et al. (1985a) and Breeden

(1986). However, while these authors give equilibrium expressions for the instantaneous real risk-

free interest rate, here their results will be adapted to the context of a monetary economy. Finally,

a one-country pure exchange economy with a cash-in-advance constraint will be used, and a new

equilibrium specification for the instantaneous nominal riskless interest rate will be obtained.

5.1 The production side of the economy: a la Cox et al. (1985a)

Imposing the above two market clearing conditions to equation (22), the budget constraint (20)

becomes

dv =
h
vωS

0 · µS (t)− p (t)C (t)
i
dt+ vωS

0 · E (t) · dWP (t) (28)

and a second version for the HJB equation is obtained:

max
(ωS ,C)

φ
¡
ωS , C; v, x, t

¢
= 0, (29)

with

φ
¡
ωS , C; v, x, t

¢
:= u (C, t) +

¡
LωS ,CJ

¢
(v, x, t) ,

and where

¡
LωS ,CJ

¢
(v, x, t) = Jt +

h
vωS

0 · µS (t)− p (t)C
i
Jv + Jx0 ·

¡
ā · x+ b̄

¢
19



+
1

2
tr
£
Jx x0 · Σ · V D (t) · Σ0

¤
+
1

2
v2JvvωS

0 · E (t) ·E (t)0 · ωS

+vωS
0 · E (t) ·

q
V D (t) ·Σ0 · Jvx,

with ωS ≥ 0, C ≥ 0, and subject to J (v, x, T ) = 0. Similarly, conditions (23) to (27) can be

rewritten as:

uC (t)− p (t)Jv ≤ 0, (30)

[uC (t)− p (t) Jv]C = 0, (31)

φωS = vJvµS (t) + v
2JvvE (t) · E (t)0 · ωS + vE (t) ·

q
V D (t) · Σ0 · Jvx ≤ 0, (32)

ωS
0 · φωS = 0, (33)

and

ωS
0 · 1n = 1. (34)

Since restrictions (32) and (33) are similar, in structure, to Cox et al. (1985a, equations 11c and

11d), it can be shown12 that

r (t) = ωS
0 · µS (t) + v

µ
Jvv
Jv

¶
ωS

0 · E (t) · E (t)0 · ωS + ωS
0 · E (t) ·

q
V D (t) · Σ0 ·

µ
Jvx
Jv

¶
. (35)

Equation (35) expresses r (t) as a function of the indirect utility. This solution is similar to Cox et al.

(1985a, equation 14) and to Breeden (1986, equation 15). However, it is not exactly equivalent since

these last two equations give the equilibrium value of the short-term real (not nominal) interest

rate, which is stated in terms of the real wealth, because both models use the single physical good

as the numeraire.

Furthermore, using Cox et al. (1985a, theorem 1), equation (35) can be restated as the symmetric

of the expected rate of change in the marginal utility of nominal wealth:

r (t) = − µJv (t)

Jv (v, x, t)
, (36)

12Detailed proof available upon request.
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where

dJv = µJv (t)dt+

·
vJvvωS

0 ·E (t) +
¡
Jvx
¢0 · Σ ·qV D (t)¸ · dWP (t) , (37)

with

µJv (t) = (LJv) (v, x, t) (38)

= Jvt +
h
vωS

0 · µS (t)− p (t)C (t)
i
Jvv + Jvx0 ·

¡
ā · x+ b̄

¢
+
1

2
v2JvvvωS

0 · E (t) · E (t)0 · ωS +
1

2
tr
£
Jvx x0 · Σ · V D (t) · Σ0

¤
+vωS

0 · E (t) ·
q
V D (t) ·Σ0 · Jvvx.

Next, r (t) will be derived as an explicit function of the utility of consumption, and no longer

as a function of the utility of wealth.

5.2 The consumption side of the economy: a la Breeden (1986)

If condition (24) is considered, while assuming that C 6= 0, then

Jv (v, x, t) =
uC (t)

p (t)
. (39)

Using Itô’s lemma,

µJv (t) =
1

p (t)
µuC (t)−

uC (t)

p (t)2
µp (t) +

1

2

2uC (t) p (t)

p (t)4
σp (t)

0 · σp (t) (40)

− 1

p (t)2
COV [duC (t) , dp (t)] ,

where

duC (t) = µuC (t)dt+ σuC (t)
0 · dWP (t) ,

uC (t) is the time-t marginal utility of consumption, with µuC (t) ∈ < and σuC (t) ∈ <n,

dp (t) = µp (t)dt+ σp (t)
0 · dWP (t) ,
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µp(t)

p(t)
∈ < represents the time-t expected rate of inflation, and σp (t) ∈ <n. Combining equations

(36), (39), and (40):

r (t) = −
µuC (t)

uC (t)
+

(
µp (t)

p (t)
−

σp (t)
0 · σp (t)
p (t)2

+
COV [duC (t) , dp (t)]

uC (t) p (t)

)
. (41)

From Breeden (1986, equation 19), it is known that the first term on the right-hand-side of

the previous equation represents the time-t real risk-free instantaneous interest rate, which will be

denominated by k (t). In order to compute
h
−µuC (t)

uC(t)

i
explicitly, the following stochastic differential

equation for aggregate consumption will be considered:

dC (t)

C (t)
= µC (t)dt+ σC (t)

0 · dWP (t) ,

where µC (t) ∈ < and σC (t) ∈ <n. Applying Itô’s lemma to the marginal utility of consumption,

it is possible to derive the functional form of its drift:

µuC (t) = uCC (t)µC (t)C (t) + uCt (t) +
1

2
uCCC (t) σC (t)

0 · σC (t)C (t)2 . (42)

Substituting identity (42) into the first term in the right-hand-side of equation (41), one obtains the

consumption-based equilibrium representation of Breeden (1986, equation 22) for the real risk-free

instantaneous interest rate:

k (t) = −
µuC (t)

uC (t)
(43)

= −uCt (t)
uC (t)

− C (t)uCC (t)
uC (t)

µC (t)−
1

2

C2 (t)uCCC (t)

uC (t)

£
σC (t)

0 · σC (t)
¤
.

Hereafter, it will be considered, as an additional assumption, that preferences are time-separable,

i.e.

A.12) u (C, t) = e−ρtU (C), where ρ is the constant discount factor or time-preference parameter,

UC > 0 (non-satiation assumption), and UCC < 0 (risk aversion assumption).
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Therefore, −uCt(t)uC(t)
= −−ρe−ρtUC

e−ρtUC
= ρ , and combining equations (41) and (43),

r (t) = k (t) +

(
µp (t)

p (t)
−

σp (t)
0 · σp (t)
p (t)2

+
COV [duC (t) , dp (t)]

uC (t) p (t)

)
, (44)

with

k (t) = ρ− C (t)uCC (t)
uC (t)

µC (t)−
1

2

C2 (t)uCCC (t)

uC (t)

£
σC (t)

0 · σC (t)
¤
. (45)

The above expression for r (t) is distinct from both Heston (1988, equation 45) and Cox et al.

(1985b, equation 60). In opposition with Heston (1988), equation (44) does not correspond to the

well known Fisher identity, because

COV [duC (t) , dp (t)]

uC (t) p (t)
=

σuC (t)
0 · σp (t)

uC (t) p (t)

=
C (t)uCC (t)

uC (t) p (t)
σC (t)

0 · σp (t)

=
C (t)uCC (t)

uC (t) p (t)
COV

·
dC (t)

C (t)
, dp (t)

¸
6= 0,

since we are not assuming money neutrality (i.e. it is not assumed that the price level has no

effect on the real side of the economy). In fact, Sun (1992) found a significant correlation between

the price level and the growth rate of consumption, which does not support the money neutrality

assumption. On the other hand, equation (44) shows two important differences when compared to

Cox et al. (1985b, equation 60). Firstly, because equation (44) is expressed in terms of the direct

utility function, and not in terms of the utility of wealth. Secondly, because in equation (44) both

the price level, p (t), and the expected rate of inflation,
µp(t)

p(t)
, are endogenously determined, and

thus one can be sure that they will be consistent with our general equilibrium framework.

5.3 A one-country pure exchange economy

Assuming A.5, and since in equilibrium ωS
0 ·1n = 1 as well as ωF = 0 , one moves from a production

economy to a Lucas (1978) type of pure exchange economy where all output is consumed, that is
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C (t) = q (t).13 Hence, equations (44) and (45) can be stated in terms of the exogenous aggregate

output, which means that it is not necessary to solve the HJB equation (22) for the endogenous

consumption process:

r (t) = k (t) +

"
µp (t)

p (t)
−

σp (t)
0 · σp (t)
p (t)2

+
q (t) uqq (t)

uq (t)
σq (t)

0 ·
σp (t)

p (t)

#
, (46)

with

k (t) = ρ− q (t)uqq (t)
uq (t)

µq (t)−
1

2

q (t)2 uqqq (t)

uq (t)

h
σq (t)

0 · σq (t)
i
. (47)

Equation (47) can be found in Bakshi and Chen (1997a, equation 11). The next Theorem rewrites

the above equilibrium solution for the nominal short-term interest rate only in terms of the exoge-

nous output and money supply processes.

Theorem 1 In equilibrium, the instantaneous nominal interest rate is

r (t) =
£
ρ+ µM (t)− µq (t)− σM (t)

0 · σM (t) + σq,M (t)
¤

(48)

−q (t) uqq (t)
uq (t)

h
µq (t)− σq,M (t) + σq (t)

0 · σq (t)
i
− 1
2

q (t)2 uqqq (t)

uq (t)

h
σq (t)

0 · σq (t)
i
,

where σq,M (t) := COV
h
dq(t)
q(t) ,

dM(t)
M(t)

i
.

Proof. See appendix A.

According to equation (48), the short-term nominal equilibrium interest rate is increasing in:

the time-preference parameter; the expected growth rate of money supply; the expected rate of

change in the aggregate output (if the coefficient of relative risk aversion is greater than one); and

in the volatility of the aggregate output growth rate. On the other hand, r (t) is decreasing in:

the volatility of the money supply growth rate; and in the covariance between the growth rates of

aggregate output and money supply (again, if −q(t)uqq(t)uq(t)
> 1).

13Both types of economy can be made compatible through the definition of µS (q,M,S,X, t) and E (q,M,S,X, t) in

such a way that the production economy generates an endogenous consumption process identical to the exogenously

specified output process. See Heston (1988, footnote 9) or Bakshi and Chen (1997a, footnote 5).
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Equations (35) and (48) generate the same term structure of interest rates, because they must

hold simultaneously in equilibrium. However, the use of equation (35) requires the existence of a

closed-form solution for the indirect utility function, which has to be obtained by solving the HJB

equation (22), or requires the assumption of restrictive preferences: namely, the use of a log utility

function, as is the case in Cox et al. (1985a) and Longstaff and Schwartz (1992a). Consequently,

next sections will try to fit the Duffie and Kan (1996) model into a general equilibrium framework

with more realistic assumptions about preferences than those implied by a Bernoulli logarithmic

utility function, through the use of equation (48) instead of equation (35). In fact, it turns out to

be easy to work with equation (48) since the stochastic processes for the aggregate output and for

the money supply can be exogenously specified in a suitable fashion.

6 The equilibrium factor risk premiums

In order to fit the Duffie and Kan (1996) model into a general equilibrium framework, it is necessary

to prove that our general equilibrium assumptions imply an affine form for r (t) -as in equation (4)-

and a risk-adjusted process for X (t) equivalent to the stochastic differential equation (5). However,

the derivation of the equilibrium risk-neutral process for the model’ factors (that is consistent with

our general equilibrium setup) requires the computation of the risk premiums associated with each

one of the non-traded state variables. Only after having derived such factor risk premiums, it is then

possible to specify the equilibrium risk-adjusted drift for dX (t), by applying Girsanov’s theorem or

by obtaining the PDE that must be satisfied, in equilibrium, by any interest rate contingent claim.

In equilibrium, since ωF = 0 , equation (27) yields:

h
µF (t)− r (t) 1n−m

i
= −v

µ
Jvv
Jv

¶
H (t) ·E (t)0 · ωS −H (t) ·

q
V D (t) · Σ0 ·

µ
Jvx
Jv

¶
.
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Both sides of the previous equation are (n−m)× 1 matrices. Taking just their ith-row,

µFi (t)− r (t) = −v
µ
Jvv
Jv

¶
hi (t)

0 · E (t)0 · ωS − hi (t)0 ·
q
V D (t) · Σ0 ·

µ
Jvx
Jv

¶
, (49)

where µFi (t) is the expected nominal time-t rate of return on the i
th financial contingent claim,£

µFi (t)− r (t)
¤
represents the equilibrium expected excess nominal rate of return (over the risk-free

interest rate) generated by the ith financial contingent claim, and hi (t)
0 is the ith-row of matrix

H (t).

In order to obtain hi (t) explicitly, Itô’s lemma will be applied to the value of the ith financial

contingent claim, Fi (x, t), where it is assumed that the contractual terms of the financial contingent

claim do not depend explicitly on wealth (and, again, only time-dependencies will be retained):

dFi (t) = Fi (t)µFi (t) dt+
∂Fi (t)

∂x0
·Σ ·

q
V D (t) · dWP (t) . (50)

Comparing equations (14) and (50), it follows that

Fi (t)hi (t)
0 =

∂Fi (t)

∂x0
· Σ ·

q
V D (t) := σFi (t)

0 .

Thus, equation (49) is equivalent to:

£
µFi (t)− r (t)

¤
Fi (t) = −v

µ
Jvv
Jv

¶
∂Fi (t)

∂x0
· Σ ·

q
V D (t) · E (t)0 · ωS (51)

−∂Fi (t)
∂x0

· Σ · V D (t) ·Σ0 ·
µ
Jvx
Jv

¶
.

On the other hand, equation (50) and the stochastic process (37) followed by the marginal

utility of wealth, imply that

COV [dFi (x, t) , dJv (v, x, t)]

=
∂Fi (t)

∂x0
· Σ ·

q
V D (t) ·

·
vJvvωS

0 ·E (t) +
¡
Jvx
¢0 · Σ ·qV D (t)¸0

= vJvv
∂Fi (t)

∂x0
· Σ ·

q
V D (t) · E (t)0 · ωS +

∂Fi (t)

∂x0
· Σ · V D (t) · Σ0 · Jvx. (52)
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Comparing equations (51) and (52), a similar result to Cox et al. (1985a, equation 27) is

obtained, the only difference being the fact that one is now considering expected excess equilibrium

nominal returns instead of real ones:

£
µFi (t)− r (t)

¤
Fi (t) = −

1

Jv (v, x, t)
COV [dFi (x, t) , dJv (v, x, t)] . (53)

However, since a solution for the indirect utility function is not available, the above expression

is of little practical use. In order to compute the equilibrium risk premiums required for the ith

financial contingent claim, as a function of estimable parameters, it is necessary to convert the

right-hand-side of equation (53) in terms of the exogenously specified output and money supply

processes. Such task is accomplished by the following Theorem.

Theorem 2 In equilibrium, the factor risk premiums on any financial contingent claim F (t) satisfy

[µF (t)− r (t)]F (t) = −
·
1 +

q (t)uqq (t)

uq (t)

¸
COV

·
dF (t) ,

dq (t)

q (t)

¸
(54)

+COV

·
dF (t) ,

dM (t)

M (t)

¸
.

Proof. See appendix B.

Thus, in order to find the equilibrium factor risk premiums (as well as the instantaneous nominal

equilibrium spot interest rate) for the Duffie and Kan (1996) model, it is just necessary to specify

an utility function as well as suitable output and money supply stochastic processes.

Before proceeding, three remarks should be made. First, equation (54) implies that the factor

risk premiums are increasing in the conditional covariance of the contingent claim value with: i)

the rate of change in the aggregate output (if the coefficient of relative risk aversion is greater

than one); and, with ii) the growth rate of money supply. In other words, equation (54) shows

that both “production risk” (i.e. technological shocks) and “monetary risk” (that is, inflationary

27



shocks) matter. Second, from Cox et al. (1985a, equation 30) or from Bakshi and Chen (1997a,

equation 9), it is well known that the equilibrium expected excess real rate of return is equal to³
−q(t)uqq(t)

uq(t)

´
COV

h
dF (t) , dq(t)

q(t)

i
. Subtracting this “real risk” compensation from equation (54),

it can now be concluded that the equilibrium compensation for “nominal risk” must be given

by COV
h
dF (t) , dM(t)

M(t)

i
− COV

h
dF (t) , dq(t)

q(t)

i
. Thirdly, equation (54) also shows that even in a

risk-neutral economy -where −q(t)uqq(t)uq(t)
= 0, i.e. under a linear utility function- the equilibrium

expected excess nominal rate of return on a financial contingent claim would still be non-zero

(unless COV
h
dF (t) , dM(t)M (t)

i
= COV

h
dF (t) , dq(t)q(t)

i
). This means that in order to derive a Duffie

and Kan (1996) model specification under the physical probability measure P that is compatible

with the specification given by the authors under the equivalent martingale measure Q, it would

be unrealistic to assume a zero or constant vector of market prices of risk, since such assumption

would most probably be inconsistent with our general equilibrium setup.

7 The Duffie and Kan (1996) model in a constant relative risk aversion economy

In order to obtain the Duffie and Kan (1996) model from our general equilibrium framework,

assumptions A.5, A.6, and A.12 must be further specialized.

7.1 An economy with a power utility function

Now, an economy with decreasing absolute risk aversion will be considered, and more specifically,

a power utility function will be used to characterize the preferences of the representative investor.

Hence, assumption A.12 is specialized into:

A.12’)

u (C, t) = e−ρt
Cγ − 1

γ
, (55)
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with γ < 1 (and thus uCC (t) < 0), γ 6= 0, and where (1− γ) is the Pratt’s measure of relative

risk aversion.14

Since C (t) = q (t) , and using equation (55), then

−q (t) uqq (t)
uq (t)

= 1− γ, (56)

and

q (t)2 uqqq (t)

uq (t)
= (γ − 1) (γ − 2) . (57)

The choice of the utility function under use was not intended to provide the most general char-

acterization of preferences but rather to be as general as necessary in order to nest, as special cases,

all the affine general equilibrium interest rate frameworks presented so far in the literature (which

are almost15 invariably based on the more restrictive log utility function). Nevertheless, it can be

easily shown that the power utility function considered hereafter is the most general specification,

under the hyperbolic absolute risk aversion class,16 that generates constant (i.e. output indepen-

dent) values for both quantities −q(t)uqq(t)uq(t)
and q(t)2uqqq(t)

uq(t)
appearing in expressions (48) and (54),

and therefore that supports the Duffie and Kan (1996) model under an affine specification for both

the drifts and the instantaneous variances of the aggregate output and money supply processes.

In order to derive a Duffie and Kan (1996) model from our general equilibrium setup, the

stochastic processes for the aggregate output and for the money supply (i.e. the functional form

14−C(t)uCC(t)
uC(t)

= 1− γ , i.e. constant relative risk aversion is being assumed.
15The most prominent exception is, perhaps, the general equilibrium specification found by Goldstein and Zapatero

(1996) for the Vasicek (1977) model, also under a pure exchange economy with power-utility but for real interest

rates.
16Which, accordingly to Ingersoll (1987, chapter 1, equation 51), can be summarized as

u (q, t) = e−ρt
1− γ

γ

µ
aq

1− γ
+ b

¶γ

, b > 0, a, γ ∈ <.
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of µq (t), σq (t), µM (t), and σM (t)) must be defined in such a way that two conditions are met: i)

r (t) must be an affine function of the state variables; and ii) µ [X (t)] must also be affine.

From Theorem 1, condition i) implies that µM (t), µq (t),
£
σM (t)

0 · σM (t)
¤
,
h
σq (t)

0 · σq (t)
i
,

and σq,M (t) must all be affine functions of X (t). So, the drifts of the stochastic processes (12) and

(13) can be defined as:

µq (t) = η + θ0 ·X (t) , (58)

and

µM (t) = π + φ0 ·X (t) , (59)

where η,π ∈ <, and θ,φ ∈ <n.

Considering condition ii), since µ [X (t)] = v [X (t)]− σ [X (t)] · Λ [X (t)] and because v [X (t)]

is defined by equation (10) as an affine function of the state vector, then µ [X (t)] can only be

affine if σ [X (t)] ·Λ [X (t)] is also affine. But, because [µF (t)− r (t)]F (t) = σF (t)
0 ·Λ [X (t)], with

σF (t)
0 = ∂F (t)

∂x0 · σ [X (t)], and, from Theorem 2,

[µF (t)− r (t)]F (t) =
∂F (t)

∂x0
·
·
−γΣ ·

q
V D (t) · σq (t) + Σ ·

q
V D (t) · σM (t)

¸
, (60)

then

σ [X (t)] ·Λ [X (t)] = −γΣ ·
q
V D (t) · σq (t) + Σ ·

q
V D (t) · σM (t) ,

and thus µ [X (t)] is affine if and only if
h
Σ ·
p
V D (t) · σq (t)

i
and

h
Σ ·
p
V D (t) · σM (t)

i
are both

affine functions of X (t). But, this is only possible if σq (t) and σM (t) are both equal to:

1.
p
V D (t) multiplied by some n× 1 vector of parameters, since V D (t) is affine; or

2.
³p

V D (t)
´−1

multiplied by some n×1 vector of parameters, since a constant is also an affine

function; or even

3. A null n× 1 vector, since zero can also be considered as an affine function.
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Although all these three alternatives are possible, the first one will be chosen since it represents

the most general case. Thus,

σq (t) =
q
V D (t) · ϕ, (61)

and

σM (t) =
q
V D (t) · χ, (62)

where ϕ ∈ <n has ϕi as its ith element, and χ ∈ <n contains χi as its ith element. Equations (61)

and (62) allow us to respect not only condition ii) but also condition i), since
£
σM (t)

0 · σM (t)
¤
=

χ0 · V D (t) · χ,
h
σq (t)

0 · σq (t)
i
= ϕ0 · V D (t) · ϕ, and σq,M (t) = χ0 · V D (t) · ϕ are all affine functions

of X (t).

Combining equations (58) with (61), and (59) with (62), assumptions A.5 and A.6 are specialized

into:

A.5’)

dq (t)

q (t)
=
£
η + θ0 ·X (t)

¤
dt+ ϕ0 ·

q
V D (t) · dWP (t) . (63)

A.6’)

dM (t)

M (t)
=
£
π + φ0 ·X (t)

¤
dt+ χ0 ·

q
V D (t) · dWP (t) . (64)

To prove that our general equilibrium framework generates a Duffie and Kan (1996) model, it

is only necessary to show that assumptions A.5’, A.6’, and A.12’ allow us to: i) Specialize equation

(48) into equation (4); and ii) Define a risk-adjusted process for X (t) equivalent to equation (5).

Next Theorem verifies requirement i).

Theorem 3 In a Duffie and Kan (1996) general equilibrium model with a power utility function,

and with output and money supply processes described by assumptions A.5’ and A.6’, respectively,

the equilibrium specification for the instantaneous nominal spot interest rate is given by:

r (t) = f +G0 ·X (t) , (65)
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with

f = ρ+ π − γη +

·
γΓ− χ2 +

γ (1− γ)

2
ϕ2
¸0
· α,

and

G = φ− γθ+ β ·
·
γΓ− χ2 +

γ (1− γ)

2
ϕ2
¸
,

where ϕ2,χ2,Γ,α ∈ <n possess (ϕi)2, (χi)2, (χiϕi), and αi as their ith element, respectively, while

β is a (n× n) matrix whose ith-column is βi.

Proof. Substituting equations (56), (57), (58), (59), (61), and (62) into equation (48),

r (t) = ρ+ π + φ0 ·X (t)−
£
η + θ0 ·X (t)

¤
− χ0 · V D (t) · χ+ χ0 · V D (t) · ϕ (66)

+(1− γ)
£
η + θ0 ·X (t)− χ0 · V D (t) · ϕ+ ϕ0 · V D (t) · ϕ

¤
− (γ − 1) (γ − 2)

2
ϕ0 · V D (t) · ϕ.

But, because ϕ0 · V D (t) · ϕ =
nP
i=1

ϕ2i vi (t), and since vi (t) = αi + βi
0 ·X (t), then ϕ0 · V D (t) · ϕ =

nP
i=1

ϕ2iαi +
nP
i=1

ϕ2i βi
0 ·X (t), i.e.

ϕ0 · V D (t) · ϕ =
¡
ϕ2
¢0 · α+ ¡ϕ2¢0 · β0 ·X (t) . (67)

Similarly, it is easy to show that

χ0 · V D (t) · χ =
¡
χ2
¢0 · α+ ¡χ2¢0 · β 0 ·X (t) , (68)

and

χ0 · V D (t) · ϕ = Γ0 · α+ Γ0 · β0 ·X (t) . (69)

Equations (67), (68), and (69) prove that assumptions A.5’ and A.6’ guarantee affine specifications

for
h
σq (t)

0 · σq (t)
i
,
£
σM (t)

0 · σM (t)
¤
, and σq,M (t).

Combining the last four equations,

r (t)
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=

½
ρ+ π − η + (1− γ) η +

·
−χ2 + Γ− (1− γ)Γ+ (1− γ)ϕ2 − (γ − 1) (γ − 2)

2
ϕ2
¸0
· α
¾

+
h
φ0 − θ0 −

¡
χ2
¢0 · β0 + Γ0 · β0 + (1− γ) θ0 − (1− γ)Γ0 · β0 + (1− γ)

¡
ϕ2
¢0 · β0

−(γ − 1) (γ − 2)
2

¡
ϕ2
¢0 · β0¸ ·X (t) ,

and simplifying terms, equation (65) is obtained.

Equation (65) shows that our general equilibrium framework provides an affine form for the

instantaneous spot risk-free nominal interest rate. Moreover, the derivation of equation (65) also

highlighted that it was only possible to obtain an affine form for r (t) because the drift, the variance,

and the covariance of the output and money supply processes were also specified as affine functions

of X (t).

Theorem 4 proves that it is possible to derive a risk-neutral process for X (t) equivalent to

equation (5), and therefore shows that the Duffie and Kan (1996) model is in fact consistent with

our type of economy.

Theorem 4 In a Duffie and Kan (1996) general equilibrium model with a power utility function,

and with output and money supply processes described by assumptions A.5’ and A.6’, respectively:

1. The risk-neutral process followed by the state variables under the equivalent martingale mea-

sure Q is equal to

dX (t) = [a ·X (t) + b] dt+Σ ·
q
V D (t) · dWQ (t) ,

if and only if the stochastic process followed by the state variables under the physical probability

measure P is assumed to be given by:

dX (t) =
£
ā ·X (t) + b̄

¤
dt+Σ ·

q
V D (t) · dWP (t) , (70)

where

ā = a+Σ · ΩD · β 0,
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and

b̄ = b+ Σ ·ΩD · α,

with

ΩD = diag {χ1 − γϕ1, . . . ,χn − γϕn} .

2. dWQ (t) = Λ [X (t)] dt+ dWP (t), with

Λ [X (t)] =
q
V D (t) ·

¡
χ− γϕ

¢
. (71)

Proof. In order to obtain a relation between the risk-neutral and the non-risk adjusted drifts

of the model’ state variables, it is necessary to compute the Duffie and Kan (1996) model’ factor

risk premiums (under a CRRA economy). For that purpose, equations (60), (61), and (62) can be

combined into

[µF (t)− r (t)]F (t) =
∂F (t)

∂x0
·
£
−γΣ · V D (t) · ϕ+ Σ · V D (t) · χ

¤
, (72)

where
£
Σ · V D (t) ·

¡
χ− γϕ

¢¤
is the vector of factor risk premiums, or the vector ΦY in the termi-

nology of Cox et al. (1985a). Because

[µF (t)− r (t)]F (t) =
∂F (t)

∂x0
· Σ ·

q
V D (t) · Λ [X (t)] ,

equation (71) follows for the vector of market prices of risk. Equation (72) identifies the analytical

formula of the equilibrium risk premium, which makes it possible to derive the fundamental PDE

for the Duffie and Kan (1996) model, under a power utility function. Since F (t) is considered to

be wealth-independent,

µF (t)F (t) = (LF ) (x, t) (73)

=
∂F (t)

∂t
+

∂F (t)

∂x0
·
¡
ā ·X + b̄

¢
+
1

2
tr

·
∂2F (t)

∂x∂x0
· Σ · V D (t) ·Σ0

¸
.
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Combining (72) and (73), the fundamental valuation equation that must be satisfied by the equi-

librium value of any financial contingent claim is obtained:

∂F (t)

∂x0
·
¡
ā ·X + b̄

¢
+

∂F (t)

∂t
+
1

2
tr

·
∂2F (t)

∂x∂x0
· Σ · V D (t) · Σ0

¸
− r (t)F (t) (74)

=
∂F (t)

∂x0
·
£
Σ · V D (t) ·

¡
χ− γϕ

¢¤
.

The right-hand-side of equation (74) can be simplified, providing a simple expression for the

risk-neutral process followed by the model’ state variables:

Σ · V D (t) ·
¡
χ− γϕ

¢
= Σ ·


(χ1 − γϕ1) v1 (t)

...

(χn − γϕn) vn (t)


= Σ ·ΩD · α+ Σ · ΩD · β0 ·X (t) .

Thus, equation (74) can be rewritten as

0 =
∂F (t)

∂x0
·
£¡
ā−Σ · ΩD · β0

¢
·X (t) +

¡
b̄−Σ · ΩD · α

¢¤
+

∂F (t)

∂t
(75)

+
1

2
tr

·
∂2F (t)

∂x∂x0
·Σ · V D (t) · Σ0

¸
− r (t)F (t) ,

which, when compared with PDE (7), yields equation (70) through the Feynman-Kač stochastic

representation formula.

Equations (65), (70) and (71) completely specify our (P, ν,Λ,σ) compatible term structure

model (under a power utility function), and prove that the Duffie and Kan (1996) model can in

fact be fitted into our general equilibrium framework. Equation (70) can now be used to estimate

the model parameters from a time-series of values for the state variables.

7.2 A special case: an economy with a log utility function

Because the log utility function is just a special case of the power utility function (as γ tends

to zero), the Duffie and Kan (1996) model can still be fitted into a general equilibrium setup if
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assumption A.12 is further specialized, maintaining all the other assumptions unchanged:

A.12”)

u (C, t) = e−ρt ln (C) . (76)

Next Corollary presents the equilibrium instantaneous nominal risk-free interest rate consistent

with the above utility function. Notice that, although the nominal spot rate is in general -see

Theorem 1- affected by both inflationary and technological shocks, equation (77) highlights that

under the log utility assumption the equilibrium nominal spot rate is only influenced by monetary

risks. Such unrealistic feature is inherent to all the equilibrium frameworks previously presented in

the literature and based on such restrictive preference assumptions.

Corollary 5 In a Duffie and Kan (1996) general equilibrium model with a log utility function, and

with output and money supply processes described by assumptions A.5’ and A.6’, respectively, the

equilibrium specification for the instantaneous nominal spot interest rate is given by:

r (t) = f +G0 ·X (t) , (77)

with

f = ρ+ π −
¡
χ2
¢0 · α,

and

G = φ− β · χ2.

Proof. Equation (77) is simply the limit of expression (65) as γ → 0.

Similarly, the risk-neutral process for X (t) that is consistent with assumption A.12” follows

from Theorem 4.

Corollary 6 In a Duffie and Kan (1996) general equilibrium model with a log utility function, and

with output and money supply processes described by assumptions A.5’ and A.6’, respectively:
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1. The risk-neutral process followed by the state variables under the equivalent martingale mea-

sure Q is equal to

dX (t) = [a ·X (t) + b] dt+Σ ·
q
V D (t) · dWQ (t) ,

if and only if the stochastic process followed by the state variables under the physical probability

measure P is assumed to be given by:

dX (t) =
£
ā ·X (t) + b̄

¤
dt+Σ ·

q
V D (t) · dWP (t) , (78)

where

ā = a+Σ · ΦD · β 0,

and

b̄ = b+ Σ ·ΦD · α,

with ΦD = diag {χ1, . . . ,χn} .

2. dWQ (t) = Λ [X (t)] dt+ dWP (t), with

Λ [X (t)] =
q
V D (t) · χ. (79)

Proof. Corollary 6 is obtained from Theorem 4 by taking the limit of expressions (70) and (71),

as γ tends to zero.

Now, equations (77), (78) and (79) completely specify a simpler but more restrictive (P, ν,Λ,σ)

compatible term structure model, under a log utility function. Such specification embodies as

special cases several existing equilibrium term structure models, such as Cox et al. (1985b) and

Longstaff and Schwartz (1992a), which were also derived under the restrictive type of preferences

implied by the log utility function. Moreover, equation (79) is equivalent to the market prices of

risk’ specification estimated by Dai and Singleton (2000, equation 8), using the simulated method of
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moments, and considered by Lund (1997, equation 25), through a linear Kalman filter implemented

by QML estimation.

7.3 An example economy

Since the majority of the general equilibrium term structure models found in the literature are

based both on log-utility preferences and on real interest rates, an example (two-factor) economy

will be now used to illustrate the impact of both risk aversion and monetary shocks under the

proposed framework. The illustrative general equilibrium specification is borrowed from Bakshi

and Chen (1997a, Figure 1),

ρ = 0.005, X (t) =

·
0.25 0.35

¸0
, ā = diag {−0.15,−0.20} ,

b̄ =

·
0.0675 0.15

¸0
, Σ = diag {0.12, 0.10} , α = 0, β = I2,

η = 0.02, θ =

·
0.04 0.06

¸0
, ϕ =

·
0.12 −0.12

¸0
,

and from the (domestic) money supply process contained in Bakshi and Chen (1997b, Figure 1),

π = −0.05, φ =

·
0.135 0.048

¸0
, χ =

·
0.30 0

¸0
,

while the utility function is still defined by equation (55).

Figure 1 displays (plausible) spot rate curves generated by the previously specified “square-root

model”, for different values of the risk aversion parameter γ and for five standard maturities: 0 (i.e.

instantaneous spot rate), 5, 10, 20 and 30 years. Similarly to Bakshi and Chen (1997a, Figure 1),

a hump-shaped relationship is observed since γ is inversely related to the intertemporal elasticity

of consumption but, at the same time, directly related to the level of risk aversion. As usual, such

pattern is more pronounced for higher maturities.

Such mixed impact of risk aversion on interest rate levels is also applicable to the interest

rate risk dimension. Table 2 presents two different measures of interest rate risk -the stochastic
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duration17 and the Fisher-Weil duration- for a coupon-bearing bond with 10 years to maturity, a

coupon rate equal to 5%, semi-annual coupons and bullet redemption. As for spot rates, there

exists a non-monotonic relationship between the duration measure and the risk aversion parameter

γ: initially, duration decreases in γ, that is the agent requires a lower exposition to risk through the

coupon-bearing bond; however, for high enough values of γ, the risk-aversion level effect prevails

and the agent is willing to accept higher duration levels. Notice also that -as argued by Munk

(1999, page 162)- the traditional Fisher-Weil duration is always above the stochastic duration,

that is it tends to overestimate the interest rate risk exposure. Table 2 also tests the impact of

monetary policy’ uncertainty through three different scenarios for the parameter χ2 (which captures

the surprise character of monetary shocks, from the second model’ factor). In general, duration

decreases in χ2, i.e. the agent demands a lower duration for scenarios of higher volatility in the

money supply.

As the present example economy highlights, the general equilibrium framework proposed in this

paper can also be understood as a synthesis between the approaches of Bakshi and Chen (1997a)

and Bakshi and Chen (1997b), although we are not confined to the “square-root” specification

but rather dealing with the whole affine class of term structure models. Additionally, the explicit

assumption of a monetary economy and of a power utility function generates model’ features that

are qualitatively different from the previous literature. For instance, consider the term premium

associated to the model’ specification of Figure 1:

TP (t, T ) =
1

dt
EPt

·
dP (t, T )

P (t, T )

¸
− r (t) (80)

= B1 (τ) ε11 (χ1 − γϕ1)X1 (t) +B2 (τ) ε22 (χ2 − γϕ2)X2 (t) ,

17Following Cox, Ingersoll and Ross (1979) and Munk (1999), the stochastic duration of a coupon-bearing bond

corresponds to the time to maturity of a zero-coupon bond with the same instantaneous variance of relative price

changes.
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where the last equality follows from equation (72). Figure 2 shows that under the parameter

configuration of Figure 1, but with ϕ2 = 0.12 (instead of −0.12) and with γ = −5, it is possible

to obtain positive (nominal) term premia, which contradicts the (real) behavior prescribed by

Bakshi and Chen (1997a, first case of page 137) since ε11ϕ1 > 0 and ε22ϕ2 > 0. This apparent

contradiction is simply a limitation of the Bakshi and Chen (1997a) non-monetary framework:

under our monetary economy, the sign of the term premium does not simply depend on the sign

of the covariance between the output and the state-vector, but it also depends on the parameters

related to the money supply process (namely, χ1 and χ2).

8 Conclusion

This paper was intended to provide a general equilibrium specification for the Duffie and Kan (1996)

model. For that purpose, in Theorems 1 and 2 new equilibrium specifications are found both for

the nominal short-term interest rate and for the expected excess nominal return on a financial

contingent claim, in the general context of a one-country monetary economy. Then, Theorems 3

and 4 propose the main contribution of the present paper: a general equilibrium Duffie and Kan

(1996) model specification, under the physical probability measure P, that is compatible with the

original model’ formulation under the equivalent martingale measure Q, and that is based on more

realistic assumptions about preferences than those implied by the usual Bernoulli logarithmic utility

function (since a power utility function was used).

In other words, our (P, v,Λ,σ) model is a very general term structure model, not only because

it is the most general one in the class of the multifactor affine and diffusion time-homogeneous

interest rate models, but also because it relies on general assumptions about preferences and nests,

as special cases, other specifications previously presented in the literature for the vector of market

prices of interest rate risk. For empirical purposes, the proposed (P, v,Λ, σ) specification is useful
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since it enables the econometric estimation of the Duffie and Kan (1996) model’ parameters from

a time-series of values for the state variables or from a panel-data of market observables.

A Appendix: Proof of Theorem 1

Applying Itô’s lemma to p (t) =
M (t)

q (t)
, all terms contained in equation (46) can be expressed as

functions of only q (t) and M (t):

µp (t) =
µM (t)M (t)

q (t)
−
M (t)µq (t)

q (t)
+
M (t)σq (t)

0 · σq (t)
q (t)

−
σq (t)

0 · σM (t)M (t)

q (t)
,

µp (t)

p (t)
= µM (t)− µq (t) + σq (t)

0 · σq (t)− σq (t)
0 · σM (t) , (81)

σp (t) =
1

q (t)
σM (t)M (t)− M (t)

q (t)2
σq (t) q (t) ,

σp (t)
0 · σp (t)
p (t)2

=
h
σM (t)− σq (t)

i0
·
h
σM (t)− σq (t)

i
,

and

σq (t)
0 · σp (t)
p (t)

= σq (t)
0 ·
h
σM (t)− σq (t)

i
.

Hence,

r (t) = ρ+
h
µM (t)− µq (t) + σq (t)

0 · σq (t)− σq (t)
0 · σM (t)

i
−
h
σM (t)

0 · σM (t)− 2σq (t)0 · σM (t) + σq (t)
0 · σq (t)

i
−q (t)uqq (t)

uq (t)

h
µq (t)− σq (t)

0 · σM (t) + σq (t)
0 · σq (t)

i
−1
2

q (t)2 uqqq (t)

uq (t)

h
σq (t)

0 · σq (t)
i
,

which yields equation (48) after collecting alike terms.

Notice, from equation (81), that, in our framework, the expected inflation rate depends both

on technological and on monetary shocks (either expected, µM , or even unanticipated, σM).
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B Appendix: Proof of Theorem 2

As a first step, condition (39) implies that equation (53) can be rewritten as

£
µFi (t)− r (t)

¤
Fi (t) = −

p (t)

uC (t)
COV

·
dFi (t) , d

µ
uC (t)

p (t)

¶¸
.

Using Itô’s lemma, the diffusion of the stochastic process d
³
uC(t)
p(t)

´
is given by 1

p(t)σuC (t)
0 −

uC(t)

p(t)2
σp (t)

0, and therefore

£
µFi (t)− r (t)

¤
Fi (t) = −

1

uC (t)
σFi (t)

0 · σuC (t) +
1

p (t)
σFi (t)

0 · σp (t) .

Applying again Itô’s lemma while considering equations (10) and (28), it follows that

σuC (t)
0 = uCC (t)

·
vCv (t)ωS

0 · E (t) + ∂C (t)

∂x0
· Σ ·

q
V D (t)

¸
,

and

σC (t)
0 =

vCv (t)ωS
0 · E (t) + ∂C(t)

∂x0 ·Σ ·
p
V D (t)

C (t)
.

Hence σuC (t) = C (t) uCC (t) σC (t), and because C (t) = q (t), then

£
µFi (t)− r (t)

¤
Fi (t) = −

q (t)uqq (t)

uq (t)
σFi (t)

0 · σq (t) +
1

p (t)
σFi (t)

0 · σp (t) .

Moreover, since σp (t) = p (t)σM (t)− p (t) σq (t),

£
µFi (t)− r (t)

¤
Fi (t) = −

q (t)uqq (t)

uq (t)
σFi (t)

0 · σq (t) + σFi (t)
0 · σM (t)− σFi (t)

0 · σq (t) .

Finally, applying the above equation to a general financial contingent claim with a value of F (t)

and an expected rate of return of µF (t), the equilibrium solution (54) follows.
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Table 1: Parameters’ restrictions needed to fit some well known term structure models into the

Duffie and Kan (1996) general specification

Vasicek Cox, Ingersoll, Longstaff and Langetieg Chen and

(1977) and Ross (1985b) Schwartz (1992a) (1980) Scott (1995)

n 1 1 2

f 0 0 0 0

G 1 1 1

a diagonal diagonal

b

Σ I2 diagonal

α 1 0 0 0

β 0 1 I2 On In

On and In denote n× n null and identity matrices, respectively.

α ∈ <n is a vector with αi as its ith-component.

β ∈ <n×n is a matrix whose ith-column is given by vector βi.

All the other variables are defined according to the terminology of Duffie and Kan (1996).
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Table 2: Duration (in years) of a coupon-bearing bond with 10 years to maturity, a coupon rate

equal to 5%, semi-annual coupons and bullet redemption, for different parameter’ values

Stochastic duration Fisher-Weil duration

γ \ χ2 0 0.1 0.2 0 0.1 0.2

−1 6.93 6.88 6.98 8.03 8.03 8.15

−2 6.58 6.43 6.45 7.68 7.61 7.68

−3 6.35 6.10 6.03 7.43 7.27 7.26

−4 6.21 5.87 5.71 7.30 7.03 6.93

−5 6.15 5.75 5.50 7.32 6.93 6.73

−6 6.14 5.71 5.39 7.49 6.99 6.67

−7 6.26 5.77 5.39 7.82 7.21 6.77

−8 6.65 5.97 5.50 8.26 7.59 7.04

Figure 1: Impact of risk aversion (γ) on interest rates
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Figure 2: Spot rates and term premium under the specification of Figure 1, but with ϕ2 = 0.12

and γ = −5.
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