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1. (a) Since a futures contract is a Q-martingale, then

Ft =M × δ × EQ [100%− E (T, T + δ)| Ft] .

On the other hand, since

P (T, T + δ) =
1

1 + δ ×E (T, T + δ)
,

then

Ft = M × δ × EQ
{
1− 1

δ

[
1

P (T, T + δ)
− 1
]∣∣∣∣Ft

}

= M ×
{
1 + δ − EQ

[
P (T, T + δ)−1

∣∣Ft
]}

. (1)

Using equation (342) of the handouts, then

EQ
[
P (T, T + δ)−1

∣∣Ft
]
= EQ [exp (−A (δ)−B (δ) rT )| Ft]
= exp (−A (δ))EQ [exp (−B (δ) rT )| Ft] . (2)

Using Proposition 66 of the handouts with λ = B (δ), µ = 0, t = T , and t0 = t,
equation (2) becomes

EQ
[
P (T, T + δ)−1

∣∣Ft
]
= exp (−A (δ)) exp

[
φB(δ),0 (T − t)− rtψB(δ),0 (T − t)

]
.

(3)
Finally, and combining equations (1) and (3), we get

Ft =M × (1 + δ)−M × exp
[
−A (δ) + φB(δ),0 (T − t)− rtψB(δ),0 (T − t)

]
.

(b) The analysis will be illustrated for a call option; for put options the reasoning is
similar. Let ct (Bt;X;T ) be the time-t value of a European-style call option on
the coupon-bearing bond Bt, with strike X and maturity at time T (t ≥ T ). The
underlying coupon-bearing bond pays N0 cash flows ki after the option’s expiry
date, i.e. at times Ti (> T ), for i = 1, ..., N0, and, therefore,

BT =
N0∑

i=1

kiP (T, Ti) . (4)
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We want to show that

ct (Bt;X;T ) =
N0∑

i=1

kict [P (t, Ti) ;Xi;T ] , (5)

where ct [P (t, Ti) ;Xi;T ] is given by Proposition 68 of the handouts,

Xi = exp [A (Ti − T ) +B (Ti − T ) r∗] , (6)

and the critical short-term interest rate r∗ is the implicit solution of the following
equation:

N0∑

i=1

ki exp [A (Ti − T ) +B (Ti − T ) r∗] = X. (7)

Proof:

Using equations (4) and (7), then

cT (BT ;X;T ) = (BT −X)+

=

(
N0∑

i=1

kiP (T, Ti)−X

)+

=

(
N0∑

i=1

kiP (T, Ti)−
N0∑

i=1

kiXi

)+

=

[
N0∑

i=1

ki (P (T, Ti)−Xi)

]+
. (8)

The crucial step is to recognize that P (T, Ti) is a decreasing function of rT because
B (Ti − T ) < 0. Since k > 0 (to ensure mean-reversion) and γ > 0 (from equation
(346) of the handouts), then eγ(Ti−T ) > 1 and B (Ti − T ) < 0. Consequently,

[
N0∑

i=1

ki (P (T, Ti)−Xi)

]+
=

N0∑

i=1

ki [P (T, Ti)−Xi]
+
,

and equation (8) becomes

cT (BT ;X;T ) =
N0∑

i=1

ki [P (T, Ti)−Xi]
+
. (9)
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Therefore,

ct (Bt;X;T ) = P (t, T )EQT

[
cT (Bt;X;T )

P (T, T )
|Ft
]

= P (t, T )EQT

{
N0∑

i=1

ki [P (T, Ti)−Xi]
+ |Ft

}

=
N0∑

i=1

kiP (t, T )EQT

{
[P (T, Ti)−Xi]

+

P (T, T )
|Ft
}

=
N0∑

i=1

kict [P (t, Ti) ;Xi;T ] .

(c) In question 1.c) of the exam of 15/Dez/09 it was shown that, under the Vasiček
(1977) model, and for λ, µ ∈ R+,

EQ

[
e−λrt exp

(
−µ

∫ t

t0

rsds

)
|Ft0

]
= exp

[
φλ,µ (t− t0)− rt0ψλ,µ (t− t0)

]
, (10)

where

ψλ,µ (t− t0) :=
(αλ− µ) eα(t−t0) + µ

α
, (11)

and

φλ,µ (t− t0) := αγ

∫ t

t0

(αλ− µ) eα(s−t0) + µ

α
ds−1

2
ρ2
∫ t

t0

[
(αλ− µ) eα(s−t0) + µ

α

]2
ds.

(12)
Therefore, the moment generating function (with parameter ω) of the random
variable

yt :=

∫ t

t0

rsds

is given by

M (ω) = EQ [exp (ωyt) |Ft0 ]
= exp

[
φ0,−ω (t− t0)− rt0ψ0,−ω (t− t0)

]
. (13)

On the other hand, we also know that

V AR (yt|Ft0) = EQ
(
y2t |Ft0

)
− [EQ (yt|Ft0)]2 . (14)

Through the differentiation of the moment generating function (13) we can obtain
the moments contained on the right-hand side of equation (14):

EQ (yt|Ft0) =
∂M (ω)

∂ω

∣∣∣∣
ω=0

=

[
∂φ0,−ω (t− t0)

∂ω

∣∣∣∣
ω=0

− rt0
∂ψ0,−ω (t− t0)

∂ω

∣∣∣∣
ω=0

]
, (15)
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and

EQ
(
y2t |Ft0

)
=

∂2M (ω)

∂ω2

∣∣∣∣
ω=0

=

[
∂2φ0,−ω (t− t0)

∂ω2

∣∣∣∣
ω=0

− rt0
∂2ψ0,−ω (t− t0)

∂ω2

∣∣∣∣
ω=0

]
. (16)

2. (a) Using equation (58) of the handouts, the fair value of the European-style call
(with β < 2) is given by:

ct (S,X, T ) = Ste
−q(T−t)Q

χ2(2+ 2
2−β

,2x)
(
2κX2−β

)
−Xe−r(T−t)F

χ2( 2
2−β

,2κX2−β) (2x) ,

(17)
where

κ :=
2 (r − q)

(2− β) δ2 [e(2−β)(r−q)(T−t) − 1] , (18)

and
x := κS

2−β
t e(2−β)(r−q)(T−t). (19)

Since the (annualized) standard deviation of stock returns is equal to 20% per
year, then, and using equation (2) of the handouts,

δ =
20%

(10)
1−2
2

= 0.632456.

Using equations (18) and (19),

κ =
2 (1%− 2%)

(2− 1) (0.632456)2 [e(2−1)(1%−2%)×0.25 − 1]
∼= 20.02501042,

and
x = 20.02501042× (10)2−1 e(2−1)(1%−2%)×0.25 ∼= 199.7501042.

Hence, equation (17) yields

ct = 10× e−2%×0.25 ×Q
χ2(2+ 2

2−1
,2×199.7501042)

(
2× 20.02501042× 102−1

)

−10× e−1%×0.25 × F
χ2( 2

2−1
,2×20.02501042×102−1) (2× 11.22259259)

= 10× e−2%×0.25 ×Qχ2(4,399.5002083) (400.5002083) (20)

−10× e−1%×0.25 × Fχ2(2,400.5002083) (399.5002083) .

From the table provided in the exam, we know that

Fχ2(2,400.5002083) (399.5002083) = 0.48006. (21)
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The probabilityQχ2(4,399.5002083) (400.5002083) can be computed using the Sankaran
approximation, i.e.

Qχ2(a,b) (z) = 1−Q
(
χ2 (a, b) < z

)

= 1−Q
{[

χ2 (a, b)

a+ b

]h
<

(
z

a+ b

)h}

≈ Φ

[

−
(
z
a+b

)h − µh

σh

]

, (22)

where

µh := 1 + h (h− 1) a+ 2b

(a+ b)2
− h (h− 1) (2− h) (1− 3h) (a+ 2b)

2

2 (a+ b)4
, (23)

σ2h := h2
2 (a+ 2b)

(a+ b)2

[
1− (1− h) (1− 3h) a+ 2b

(a+ b)2

]
, (24)

and
h := 1− 2

3
(a+ b) (a+ 3b) (a+ 2b)−2 . (25)

Since a = 4 e b = 399.5002083, then

h = 1− 2
3
(4 + 399.5002083) (4 + 3× 399.5002083)

(4 + 2× 399.5002083)−2
∼= 0.498343696,

µh = 1 + 0.498343696× (0.498343696− 1) 4 + 2× 399.5002083
(4 + 399.5002083)2

−0.498343696× (0.498343696− 1) (2− 0.498343696)

(1− 3× 0.498343696) (4 + 2× 399.5002083)
2

2 (4 + 399.5002083)4

∼= 0.998764739,

and

σ2h = 0.4983436962 × 2 (4 + 2× 399.5002083)
(4 + 399.5002083)2[

1− (1− 0.498343696) (1− 3× 0.498343696) 4 + 2× 399.5002083
(4 + 399.5002083)2

]

∼= 0.002452719.

Using equation (22), then

Qχ2(4,399.5002083) (400.5002083) = Φ




−

(
400.5002083
4,+.5002083

)0.498343696
− 0.998764739

√
0.002452719






∼= 0.519943498. (26)
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Finally, combining equations (20), (21) and (26), then

ct = 10× e−2%×0.25 × 0.519943498− 10× e−1%×0.25 × 0.48006
∼= EUR0.38484.

(b) Using equation (47) of the handouts,
∫ ∞

400.50021

fχ2(4,b) (399.50021) db = 1−Qχ2(4−2,400.5002083) (399.50021)

= Fχ2(2,400.5002083) (399.50021)

= 0.48006,

where the last line follows from equation (21).

3. (a) Using Proposition 22 of the handouts,

p0 = −15× e−2%×0.5 × [1− P1 (St = 15, vt = 0.09;T = 0.5, X = 10)] (27)

+e−1%×0.5 × 10× [1− P2 (St = 15, vt = 0.09;T = 0.5,X = 10)] .

Using equations (173) and (174) of the handouts:

P1 (St = 15, vt = 0.09;T = 0.5,X = 10) ≈ 1

2
+
1.50990948

π
∼= 9.8062E − 01, (28)

and

P2 (St = 15, vt = 0.09;T = 0.5,X = 10) ≈ 1

2
+
1.47210171

π
∼= 9.6858E − 01. (29)

Combining equations (27), (28) and (29), then

p0 = −15× e−2%×0.5 × (1− 9.8062E − 01) + 10× e−1%×0.5 × (1− 9.6858E − 01)
∼= EUR0.02477.

(b) The terminal payoff of a range cash-or-nothing option with strikes Xa and Xb,
and with a contract size equal do M , is equal to

RCNT =M11{Xa<ST<Xb}.

Consequently,

RCNt = e−r(T−t)EQ
(
M11{Xa<ST<Xb}

∣∣Ft
)

= Me−r(T−t)EQ
(
11{Xa<ST<Xb}

∣∣Ft
)

= Me−r(T−t)Q (Xa < ST < Xb| Ft)
= Me−r(T−t) [Q (ST < Xb| Ft)−Q (ST < Xa| Ft)] . (30)
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Since
Q (ST < X| Ft) = 1− P2 (St, vt;T,X) , (31)

and combining equations (30) and (31), then

RCNt =Me−r(T−t) [P2 (St, vt;T,Xa)− P2 (St, vt;T,Xb)] . (32)

For the option contract under analysis,

P2 (St, vt;T,Xa = 10) ∼= 9.6858E − 01

and

P2 (St, vt;T,Xb = 20) ≈ 1

2
+
−1.39799306

π∼= 5.5005E − 02.

Therefore,

RCN0 = 100× e−1%×0.5 × (9.6858E − 01− 5.5005E − 02)
∼= EUR90.902.

4. (a) The first coupon is a long coupon and is equal to

2%×
(
1 +

237

365

)
∼= 3.2986%.

Hence, the purpose is to price a bond with the following future cash flows:

237 dias (ACT)

366 dias (ACT)

218 dias (ACT) = 0.4044 years 1.4044 years 2.4044 years

0 (366-218)/366 

MaturitySettl. Date Next coupon date

14-05-15

Last coupon date

19-09-14

IAD

18-12-15 14-05-16 14-05-17 14-05-18

B0 = ? 3.2986% 2.00% 102.00%

Therefore,

B0 = 3.2986%P (0, 0.4044) + 2%P (0, 1.4044) + 102%P (0, 2.4044)

= 3.2986%P (0, 0.4044) + 2%× 0.9866 + 102%× 0.9773. (33)

Concerning the discount factor for the maturity of 0.2548 years, equations (269)
and (270) of the handouts imply that

B (0.4044) =
1− e−3×0.4044

3∼= 0.2342,
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and

A (0.4044) = (0.2342− 0.4044)
(
1%− 0.12

2 (3)2

)
− 0.12

4× 3 × (0.2342)
2

∼= −0.0017.

Hence,

P (0, 0.4044) = exp (−0.0017− 0.2342× 1%)
∼= 0.9960.

Recalling equation (33), then

B0 = 3.2986%× 0.9960 + 2%× 0.9866 + 102%× 0.9773
∼= 104.941%.

(b) Using Proposition 59 of the handouts,

c0 [P (0, 1.4044) ; 0.9866; 0.4044]

= P (0, 1.4044)Φ
(
dV1
)
− 0.9866× P (0, 0.4044)Φ

(
dV0
)

= 0.9866× Φ
(
dV1
)
− 0.9866× 0.9960× Φ

(
dV0
)
,

where

v (0, 0.4044, 1.4044) =

√
0.12

32
[1− e−3×1]2

1− e−2×3×0.4044

2× 3
∼= 1.235%,

dV1 =
ln
(

0.9866
0.9866×0.9960

)
+ (1.235%)2

2

1.235%
∼= 0.329748238,

and

dV0 = 0.329748238− 1.235%
∼= 0.317402032.

Therefore,

c0 [P (0, 1.4044) ; 0.9866; 0.4044]

= 0.9866× Φ (0.329748238)− 0.9866× 0.9960× Φ (0.317402032)
= 0.9866× 0.629204899− 0.9866× 0.9960× 0.624530717
∼= 0.707%. (34)
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5. (a) The purpose is to price the following option contract:

p0 [P (0, 3) ; 94.531%; 1] .

Using Proposition 68 of the handouts,

p0 [P (0, 3) ; 94.531%; 1] = −P (0, 3)×Qχ2
( 4×4×3%0.052

,ζ2)

(
r∗

L2

)
(35)

+0.94531× P (0, 1)×Qχ2
(192,ζ1)

(
r∗

L1

)
,

where

γ =

√
42 + 2× (5%)2

∼= 4.000624951,

ζ2 =
8rtγ

2eγ(T1−t)

σ2 [eγ(T1−t) − 1] {γ [eγ(T1−t) + 1] + [k − σ2B (T2 − T1)] [eγ(T1−t) − 1]}
=

[
8× 1%× (4.000624951)2 × e4.000624951×1

] {
0.052 ×

(
e4.000624951×1 − 1

)
[
4.000624951×

(
e4.000624951×1 + 1

)

+
(
4− 0.052 × (−0.2499)

) (
e4.000624951×1 − 1

)]}−1

∼= 1.193497622,

L2 =
σ2

2

eγ(T1−t) − 1
γ [eγ(T1−t) + 1] + [k − σ2B (T2 − T1)] [eγ(T1−t) − 1]

=
0.052

2
× (e4.000624951×1 − 1)

4.000624951 (e4.000624951×1 + 1) + (4− 0.052 (−0.2499)) (e4.000624951×1 − 1)
∼= 0.000153366,

and

r∗ =
ln (K)− A (T2 − T1)

B (T2 − T1)

=
ln (0.94531)− A (3− 1)

B (2)

=
ln (0.94531)− (−0.0525)

−0.2499
∼= 1.497%.

Therefore,

p0 [P (0, 3) ; 94.531%; 1] (36)

= −0.9185×Qχ2
(192,1.193497622)

(
1.497%

0.000153366
∼= 97.58045157

)

+0.94531× 0.9752×Qχ2
(192,1.193589112)

(
1.497%

0.00015337
∼= 97.5729719

)
.
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Using the table provided in the exam, we can compute the two probabilities
contained in the previous equation:

Qχ2
(192,1.193497622)

(97.58045157) = 1− 1.33206E − 09, (37)

and
Qχ2

(192,1.193589112)
(97.5729719) = 1− 1.32717E − 09. (38)

Finally, combining equations (36), (37) and (38), then

p0 [P (0, 3) ; 94.531%; 1]

= −0.9185× (1− 1.33206E − 09) + 0.94531× 0.9752× (1− 1.32717E − 09)
∼= 0.00337228.

(b) Using Proposition 61 of the handouts, the fair value of a European-style put on a
CBB can be decomposed into a portfolio of 2 European-style puts on PBDs:

p0 (Bt;X = 98.37%;T = 1) (39)

= 2%× p0 [P (0, 2) ;X1;T = 1] + 102%× p0 [P (0, 3) ;X2;T = 1] .

The strikes can be obtained through equation (327) of the handouts:

X1 = exp [A (2− 1) +B (1)× 1.497%]
= exp (−0.022636381− 0.245404429× 1.497%)
∼= 97.403%,

and

X2 = exp [A (3− 1)−B (3− 1)× 1.497%]
= exp (−0.05249929− 0.249896711× 1.497%)
∼= 94.531%.

Hence,

p0 (Bt;X = 98.37%;T = 1) (40)

= 2%× p0 [P (0, 2) ;X1 = 97.403%;T = 1]

+102%× p0 [P (0, 3) ;X2 = 94.531%;T = 1] .

The second put was already priced in the previous question–please see equation
(34):

p0 [P (0, 3) ; 94.531%; 1] ∼= 0.00337228. (41)

Concerning the first put, the exam provides the following market price:

p0 [P (0, 2) ;X1 = 97.403%;T = 1] = 0.341%. (42)

Combining equations (40), (41) and (42),

p0 (Bt;X = 98.37%;T = 1)

= 2%× 0.341% + 102%× 0.337228%
∼= 0.351%.
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