
A FIPA compliant Goal Delegation Protocol
♣Federico Bergenti, ♦ Luis Miguel Botelho, ♣Giovanni Rimassa, ♣Matteo Somacher

♣AOT Lab - Dipartimento di Ingengeria dell’Informazione
Parco Area delle Scienze 181/A

43100 Parma, Italy

+39 0521 905708, +39 0521 905712

bergenti@ce.unipr.it, rimassa@ce.unipr.it,
somacher@ce.unipr.it,

♦ Department of Computer Science of ISCTE
Av. Das Forças Armadas

Edifício ISCTE, 1600 Lisbon, Portugal
+351 21 7935000

Luis.Botelho@iscte.pt

ABSTRACT
This paper presents an interaction protocol, built on top of FIPA
ACL, allowing an agent to delegate a goal to another agent, in the
form of a proposition that the delegating agent intends its delegate
to bring about. The proposed protocol addresses the concrete
needs of a service that is to be deployed within the AgentCities
network, but also helps to highlight some issues that are related to
the FIPA ACL itself and its usage to build more complex agent
interaction blocks.

Keywords
Interaction protocols, goal-delegation, BDI, FIPA-ACL semantics

1. INTRODUCTION
The AgentCities project aims at building an open, worldwide
network [1] of agent based services, relying on FIPA compliant
agent platforms. The participants to the various incarnations of
AgentCities project believe that such a widespread and
heterogeneous test bed is key to support the transition of Multi
Agent Systems technologies from research labs to actual,
deployed applications. The AgentCities effort is also quite
interesting for the FIPA organization, because it will validate the
whole set of the FIPA specifications (not just the FIPA ACL) on
the widest scale so far.

Within the arena of distributed software infrastructures, FIPA
promotes a landscape where applications are composed by agents
receiving life support from platforms; FIPA tries to support both
agent-level and platform-level interoperability through a
comprehensive set of specifications. At the agent level, FIPA
mainly deals with ACL, interaction protocols, message content
and message ontology issues. Though the FIPA ACL is provided
with a semantics formally rooted in multi-modal BDI logics, it is
generally accepted that FIPA does not mandate a BDI architecture
for agents, but only that observable agent behaviour can be
interpreted within a BDI framework. Recognizing this suggests
that a major feature of the FIPA infrastructure is the support for
heterogeneous agent societies, where different members have
different internal complexity. All of them will enjoy autonomy
and sociality, but only a subset of them will really be gifted with
an internal architecture providing reasoning capabilities.

Such a vision strives for semantic scalability, where software
components of different internal complexity still exhibit a
behaviour compliant with the FIPA ACL semantics; this becomes
even more important when MAS technology tackles the new

deployment scenarios arising from the convergence between the
Internet and the wireless environments [3].

This paper proposes an interaction protocol to perform goal
delegation between two agents, in the form of a proposition that
the delegating agent wants the delegate agent to bring about.
Section 2 explains the traits and usefulness of the goal delegation
operation in the context of MAS, and clarifies the reasons for
implementing goal delegation as an interaction protocol in the
FIPA infrastructure environment. Section 3 describes the
interaction protocol as a Finite State Machine decorated with
semantic annotations, and shows its FIPA compliance and
soundness. Lastly, section 4 puts the protocol in the practical
context that caused its design in the first place: an Event
Organizer service that is to be set up in the framework of the
AgentCities project.

2. MOTIVATION AND REQUIREMENTS
Goal delegation arises quite naturally among cooperative, rational
agents: every agent pursues its own goals, goal partitioning is a
standard divide-and-conquer strategy, and in a collaborative
environment there generally are enough hierarchy and trust
relationships, so that an agent is likely to find some other one to
delegate a sub goal to. When considered from an agent
coordination perspective, goal delegation has two main facets:

• Delegation of commitment. This means that the delegate agent
should embrace the intentions of the delegating agent, trying
to achieve the goal as if it were one of its own. From the
delegating agent point of view, this requires a kind of trust in
the delegate good will: the delegating agent has to believe that
the delegate is trustworthy and will honestly try to achieve the
goal.

• Delegation of strategy. Delegating a declarative goal instead
of an operational plan means that the delegating agent is
interested only in the resulting outcome and not in the specific
way the delegate achieves it. Thus, the delegating agent not
only trusts the delegate good will, but also its skills. The
delegating agent has to believe the delegate agent knows how
to achieve the goal.

In [5] the authors analyse several aspects of trust in the
perspective of the Information Society, taking into account both
human and software agents, relating the theory of trust to
computer security issues and stressing how computer mediated
communication creates several new trust related issues. Our paper
only deals with software agents, following a rather rigid and
precise behaviour that relies on FIPA ACL semantics and the

proposed interaction protocol; however, a major aim of the
AgentCities project is to insert such agents into the global
Information Society, made by software, hardware and human
participants. So, though the general considerations about trust at
large don’t directly affect the subject of this paper, they still
remain in its conceptual landscape.

The two aforementioned facets of the goal delegation operation
correspond to the core trust in competence and disposition,
discussed in [7] as the basis for a trust relationship between two
agents. In [5], the authors also observe that some additional
mental attitudes are required in the delegating agent, in order for it
to develop a delegation disposition toward its (about to become)
delegate. These mental attitudes are the dependence belief and the
fulfilment belief. Dependence belief amounts to believing that the
goal achievement critically depends on the delegate agent, or at
least that the goal can be achieved more efficiently by relying on
the delegate agent. Fulfilment belief consists of believing that the
goal will be achieved due to the delegate contribution.

The dependence belief is not directly addressed by our protocol,
but stays implicit in the acquaintance structure of a specific
application. For instance, performing a yellow pages search or
running a service discovery protocol could result in the delegating
agent getting a list of agents it can rely on for the task to delegate.
This approach bases dependence belief on an existing service
level infrastructure, by assuming that an agent that makes a
service available through the infrastructure is indeed capable to
provide the service, with an appropriate quality level. Such an
assumption is equivalent to a shared trust that all the agents have
towards the service level infrastructure (be it a directory service, a
discovery protocol or whatever), following the approach of having
a TTP (Trusted Third Party) mediating among conflicting
stakeholders, which is quite common in computer security.
Having the infrastructure act as a TTP requires it to be both
reliable (it does not crash) and trustworthy (it does not cheat): in
the AgentCities.RTD EU project a whole work package is devoted
to the design and deployment of the AgentCities Network
Architecture, which will have suitable reliability and
trustworthiness features. Anyway, even if the current assumption
holds for the AgentCities network, the authors acknowledge that a
TTP is not available in every application scenario, but they leave
the issue of global trust (i.e. including all the infrastructure) to
discussion and future development.

The fulfilment belief, instead, is taken into account in our
protocol, in that the goal delegation proper is decoupled from
result notification. More clearly, when the goal is delegated, the
delegating agent believes the goal will be achieved, but the
delegate agent, after finding a plan and trying to execute it, tells
the delegating agent whether the goal has been achieved or not,
thus providing a chance for fulfilment belief revision.

The concept of goal delegation even goes beyond the specific
domain of agent coordination, to enter the field of software
engineering at large. The TROPOS methodology [12] performs an
early requirement analysis phase that identifies and describes the
various stakeholders in terms of their goals and the dependency
among the different actors. When moving from requirement
analysis to system architecture definition, actors can be mapped to
software agents and goal delegation looks like a natural approach
to implement the stakeholder dependencies identified during
requirement engineering. TROPOS is meant to be a

comprehensive software engineering methodology, covering the
development process from early requirements engineering to
detailed design and implementation; however, at its present level
of development, TROPOS still concentrates more on the early
development phases. Moreover, when considering AOSE
methodologies, they are rather original in the analysis phase but
become more and more similar to object-oriented ones along the
development process phases; at present, agent-oriented design is
very much like object-oriented design, and mostly stresses the role
and organizational models with respect to the interaction aspects.
We believe that valuable and reusable agent-oriented design
components are to be found not only among structural role
models, but also among behavioural conversation patterns. This
paper presents one such component, originally motivated by a
specific need but whose applicability is wide enough to be of
general interest. Our goal delegation protocol acts within the
current FIPA infrastructure and, in our opinion, can shed some
light over the relationships among the various elements that
compose the FIPA communication model, namely the FIPA ACL,
FIPA content languages and ontologies, and interaction protocols.

FIPA agents are autonomous social software components whose
external behaviour can be described with a BDI model. The
semantic scalability promoted by FIPA suggests taking different
approaches for different agent roles during design, depending on
the sophistication and internal complexity needed for each role.
Recognizing this suggests that a major feature of the FIPA
infrastructure is the support for heterogeneous agent societies,
where different members have different levels of internal
complexity. All of them will enjoy autonomy and sociality, but
only a subset will really be gifted with an internal architecture
providing reasoning capabilities. In such a heterogeneous society,
hierarchical collaboration can be achieved through either plan
execution delegation or goal delegation. Delegating the execution
is more likely to be used to coordinate the leaves of the hierarchy,
probably made by the simplest agents wrapping physical actuators
or reactive software servers. Delegating a goal will be surely used
between reasoning capable agents, but also in all those cases
where a looser coupling between the delegating and the delegate
agent is desirable: the delegate agent could generate an utility
function from the goal and set up a negotiation process, or a
medium complexity agent could have a compiled-in set of plans to
try out to achieve a pre-defined family of goals. Both the
negotiating agent and the fixed-plans agent lack a full-fledged
planning component, but they can still grant the loose coupling
granted by goal delegation with respect to plan execution
delegation.

While the plan execution delegation can obviously be
implemented using FIPA ACL request communicative act and the
FIPA-Request interaction protocol, there is no similar ready-made
support for goal delegation.

In principle, a goal delegation design component can use any
layer of the FIPA communication model: since we want our goal
delegation component to be reusable across application domains,
we avoid introducing ontological entities. Our goal delegation
protocol is based on a FIPA ACL communicative act, named
achieve after the KQML performative [11], but which is really a
macro-act defined in term of the existing ones, so that the FIPA
ACL semantics is left untouched. Moreover, from previous
considerations stems that goal delegation is a complex, high-level
conversation that involves much more than a single speech act;

therefore we define a complete interaction protocol to carry out
goal delegation.

The protocol definition, given in Section 3, uses FIPA SL to
define the achieve communicative act; this does not clash with our
requirement of application domain independence, however,
because the subset of FIPA SL we use is only the one required
by [9] to specify the FIPA ACL semantics. So, any content
language that can express the content of the primitive FIPA ACL
communicative acts can replace FIPA SL in the definition of our
protocol semantics.

During the past few years, several researchers [14], [6], [13]
pointed out that the FIPA ACL semantics, being based on internal
mental states of the communicating agents, was not really suited
to drive interactions among independently developed agents,
acting in open environments. This because the internal state of an
agent, by definition, cannot be observed from outside. Instead, it
was claimed that a more effective semantics for agent
communication could be built around observable entities such as
social commitments and agreements. One of the most common
arguments to support a social semantics with respect to a
mentalistic ones deals with protocol verification: if the
communication semantics exploits observable properties, it is
easier to design and build on-line compliance verifiers. Within the
scope of this paper, the authors are more concerned with protocol
design than with protocol verification. Therefore, they stay neutral
with respect to the mentalistic vs. observable dilemma; the
following section defines the goal delegation protocol using the
mentalistic FIPA ACL semantics just because it is the official one.
The authors are aware that FIPA set up a Semantics TC [10] to
design a semantic framework taking into account social notions,
and they believe that the ideas and techniques described in this
paper could also be easily restated in a social semantics.

3. PROTOCOL DESCRIPTION
This section has four objectives: define the achieve performative,
which can be used for goal delegation, design a goal delegation
protocol, propose a framework for protocol analysis, and analyse
the goal delegation protocol using the presented framework. The
first subsection presents the achieve performative, which is
defined in terms of the request and the inform performatives.
<i, achieve(r, G)> is defined as the sender requesting the receiver to
inform it that a plan to achieve G has been executed and G has
been achieved. The formal semantics of the achieve performative
is presented. The sub-section ends with the definition of the goal
delegation protocol.

The second subsection defines a framework for protocol analysis.
This framework consists of defining the concept of protocol-state.
Protocol state changes occur due to message sending/receiving.
Each protocol state is the union of preceding state with the set of
propositions that must be true if the sender of the state transition
message complies with the message semantics and intends the
message rational effects. Each protocol state is defined from the
perspective of an external observer.

The third subsection analyses the defined goal-delegation protocol
using the framework defined in the second subsection.

The fourth and last subsection presents an alternative design of
the achieve performative and of the goal delegation protocol that
fix a minor inconvenience of the design proposed in the first
subsection.

The whole section uses the semantics of the FIPA ACL language
as defined in [9] using the SL language. This option does not
reflect a stance of the authors. The option was made because it is a
well-known framework that is being used by the authors in the
Agentcities project.

3.1 Goal delegation
If agent i has a goal G it wants to delegate to another agent r, then i
may ask r to execute some plan of action whose execution r
believes to result in a state of the world in which G is true.
Without loss of generality, this section uses FIPA SL in order to
keep the presentation more concrete.

In SL, the Feasible operator can be used to express the idea that it
is possible to execute a given action resulting in the achievement
of some state of the world. If an agent believes there is a plan of
action ?p such that (Feasible ?p G), the agent believes ?p will bring
about G. In SL, the Done operator can be used to express the idea
that a certain action has been done. If an agent believes Done(A), it
believes to be in a state of the world in which the action A has just
been executed.

Given the semantics of the ACL inform performative, agent r can
only send message <r, inform(i, P)> if r believes P to be true. If r
informs i that a certain plan of action has just been executed, r
must believe that the plan has actually been executed. The above
elements are about all it takes to express goal-delegation
messages. The delegating agent must request the delegate to
inform it that some plan whose execution is believed to achieve
the desired goal has been executed.

In dynamic and uncertain environments, the execution of a plan
believed to bring about G does not ensure that G is actually
achieved. Therefore, after the execution of the selected plan, the
delegate agent must also check that the goal has actually been
achieved. The complete message is

<i, request(r, <r, inform(i, ∃ p(Feasible(p, G) ∧ Done(p)) ∧ G)>>

That is, i requests r to inform it that some plan believed to achieve
G has been performed and G has been achieved. According to the
semantics of the inform performative, r will only send the inform
message if it believes those conditions to hold. We propose to
extend FIPA ACL with the new performative achieve defined as
above

<i, achieve(r, G)> ≡ <i, request(r, <r, inform(i, ∃ p(Feasible(p, G) ∧ Done(
p)) ∧ G)>)>

In the remaining of this section, we analyse the feasibility
preconditions and the rational effect of the achieve performative;
and propose a protocol to be used for goal delegation. The
analysis will rely on the proposed definition. Since the achieve
performative is defined in terms of the request performative, its
semantics will result of replacing the content of the request with

<r, inform(i, ∃ p(Feasible(p, G) ∧ Done(p)) ∧ G)>.

In the FIPA Specifications [9], the semantics of the request
message is defined by the following feasibility preconditions and
rational effect:

FP of <i, request(r, A)>

− FP(A)[i\r]. The subset of the feasibility preconditions of action
A that are mental attitudes of i;

− Bi(Agent(r, A)). The sender believes the receiver to be the agent
of the requested action;

− ¬Bi(Ir Done(A)). The sender does not believe that the receiver
already intends to perform the requested action otherwise
there would be no point in requesting.

RE of <i, request(r, A)>

− Done(A). The sender i can reasonably expect that the requested
action will be done.

Replacing A by <r, inform(i, ϕ)> in which

ϕ≡∃ p(Feasible(p, G) ∧ Done(p)) ∧ G

we obtain:

FP of <i, achieve(r, G)> ≡ FP of
<i, request(r, <r, inform(i, ∃ p(Feasible(p, G) ∧ Done(p)) ∧ G))>)>

− FP(<r, inform(i, ∃ p(Feasible(p, G) ∧ Done(p)) ∧ G))>)[i\r]. The
subset of the feasibility preconditions of
<r, inform(i, ∃ p(Feasible(p, G) ∧ Done(p)) ∧ G))> that are mental
attitudes of i. The feasibility preconditions of the inform
message are mental attitudes of the sender alone, which is the
responder agent r. Therefore, this is the empty set;

− Bi(Agent(r, <r, inform(i, ∃ p(Feasible(p, G) ∧ Done(p)) ∧ G))>)). The
sender believes the receiver to be the agent of the specified
inform message;

− ¬Bi(Ir Done(<r, inform(i, ∃ p(Feasible(p, G) ∧ Done(p)) ∧ G))>)).
The sender does not believe that the receiver already intends
to send the specified inform message.

RE of <i, achieve(r, G)> ≡ RE of
<i, request(r, <r, inform(i, ∃ p(Feasible(p, G) ∧ Done(p)) ∧ G))>)>

− Done(<r, inform(i, ∃ p(Feasible(p, G) ∧ Done(p)) ∧ G))>). The
sender i can reasonably expect that the inform communicative
act will be done.

The above semantics of the achieve performative nearly fulfil all
the requirements of protocol delegation as defined in section 2:

• The initiator believes that the responder is skilled enough to
achieve the goal;

• The initiator believes the responder does not already intend to
achieve the goal;

• The initiator does not care about the plan to be used to
achieve the goal.

The first requirement can be shown to be implied by the achieve
feasibility preconditions, because the initiator can only send the
achieve message if it believes the responder to be the sender of the
message informing that the plan has been executed and the goal
has been achieved. Following the semantics of the inform
performative, the responder can only send such a message if it
believes to have actually achieved the desired goal. If we assume
the responder is aware of the feasibility preconditions of the
inform performative, the initiator can only believe the responder
will be the sender of the message if it also believes the responder
to be capable of achieving the goal.

The second requirement is not a consequence of the feasibility
preconditions of the achieve performative. Actually, the initiator
can’t believe that the responder already has the intention of
informing it that the goal has been achieved. But it is allowed to

believe that the responder already intended to achieve the desired
goal. This aspect will be the subject of section 3.4.

The third requirement is captured by the proposition the initiator
is requesting the responder to send

∃ p(Feasible(p, G) ∧ Done(p)) ∧ G

The existential quantifier in this proposition means that the plan
to be executed will be any plan believed by the responder to
achieve the desired goal. Therefore, the initiator does not care
about the specific plan that is used. Examples of possible types of
plans are:

• Ask around, just in case. Being lazy, r could ask its
acquaintances if the goal is already achieved. Notice that this
does indeed delegate the strategy but not the commitment. If
anyone among the acquaintances of agent r answers
positively, then the goal has been achieved, even if r doesn’t
know how.

• Do it yourself. r could find out a feasible plan for the goal,
which hasn’t been executed yet, and then execute it. This will
of course achieve the goal.

• Who’s going to keep my promises? r can further delegate the
goal (both strategy and commitment), using the goal
delegation protocol recursively. By induction on the nesting
level, if there is a finite number of nested delegations that
complete successfully, the goal will be achieved.

Since achieve has been defined in terms of the request message,
we will analyse the FIPA-Request protocol as the basis for the
goal delegation protocol. The FIPA-Request protocol is started by
the initiator sending the request message to the responder. When
the responder receives the request message, it has three
alternatives. It may send a not-understood message; it may send a
refuse message; or it may send an agree message. If the responder
sends the agree message, it becomes committed to try to execute
the requested action. When executing the requested action, the

inform-done

inform (ϕ)

agree

refuse

not-understood

[agreed]

request (inform (ϕ)) ≡ achieve (G)

Initiator Responder

 failure

[inform (ϕ) sent]

Figure 1 – FIPA Request Protocol for the goal delegation

responder may send a failure message in case it fails to
successfully execute the action; it may send an inform-ref
message; and it may send an inform-done message. Given the
above, in case of successful termination of the FIPA-Request
protocol, the responder sends an agree message and then it sends
an inform-ref or an inform-done.

Adapting the FIPA-Request for the goal delegation case, it would
result in the protocol described in Figure 1.

Clearly, this protocol is not totally adequate for goal delegation.
The first obvious inconvenience is that the inform-done in the last
step of the successful protocol execution is not necessary because
the responder would have already informed the initiator that the
plan has been performed and the goal has been achieved. There is
no point in informing the initiator that the requested inform
message has already been sent. Less obvious is the content of the
failure message in case something fails. There are three possible
types of failure: (i) the responder may fail sending the inform
message; (ii) the responder may fail to execute the plan; and (iii)
the responder executed the plan but, due to unforeseen events or
due to insufficient knowledge about the results of available
actions, the plan failed to attain the desired result.

Considering the above three aspects we propose the following
goal delegation protocol. Let G be the goal to be achieved, and
let’s define the proposition

ϕ≡∃ ?plan (Feasible(?plan, G) ∧ Done(?plan)) ∧ G

Notice that, although this looks like a higher order formula, it is
not because, in each concrete case, G will be instantiated with a
specific goal to be achieved. Therefore the formula is a
proposition schema, not a higher order formula.

The protocol works as follows (see also Figure 2):

1. <i, request(r, <r, inform(i, ϕ)>)>

2. Action Alternatives

(a) <r, not-understood(i, (<i, request(r, <r, inform(i, ϕ)>>, reason for
not understanding))>

(b) <r, refuse(i, (<r, inform(i, ϕ)>, Reason for refusing))>

(c) <r, agree(i, (<r, inform(i, ϕ)>, Condition of action execution))>

3. [agreed] Action Alternatives

(a) <r, failure(i, (<r, inform(i, ϕ)>, Reason for the failure of the
inform))>

(b) <r, failure(i, (<r, inform(i, ϕ)>, Plan was not completely
executed))>

(c) <r, failure(i, (<r, inform(i, ϕ)>, Goal has not been achieved))>

(d) <r, inform(i, ϕ)>

Some details of the above specification are worth noting. The
protocol specification is richer than AUML diagrams [2] currently
used in the FIPA specifications, because it specifies parts of the
contents of some of the involved messages. Symbols Plan and
Goal appearing in messages 3(b) and 3(c) will be instantiated with
concrete plan and goal expression, at the time the messages are
actually sent. This specification should be part of the protocol
description. The conversation identifiers in all of the possible
messages must be the same. It is the responsibility of the protocol
initiator to create that identifier. This specification should also be
part of the formal protocol description. Finally, each set of
alternative courses of action is available only at certain junctures,
that is, in certain protocol states. For example, alternative actions
3(a) to 3(d) are available to the agent only if the agent has agreed
to perform the requested action. It is necessary to explicitly and
formally specify protocol state changes [8].

In the following subsections we present a framework for protocol
analysis and we analyse the proposed goal delegation protocol.

3.2 Protocol Analysis
This section provides a framework that may be used to analyse
interaction protocols with respect to the set of propositions that
should be true in each protocol state. This proposal lays down the
basis for a protocol verification system, which could be built in a
Court Agent that could be developed in agent societies.

<r, not-understood(i, <r, achieve(G)>reason))>
<r, refuse(i, (<r, inform(i, ϕ)>, reason))>

<, inform(i, ϕ)> <i, request(r, <r, inform(i, ϕ)>)> = achieve

<r, agree(i, (<r, inform(i, ϕ)>, condition))>

S0

− i believes r would be the sender of the inform;
− i doesn’t believe r already intends the plan to

be executed and the goal to be achieved;
− i wants to be informed about the plan

execution and the goal achievement.

S1

− r intends to inform i about the plan execution and the goal achievement;
− r doesn’t believe i already knows anything about its intention;
− i believes r intends to inform it about the plan execution and the goal

achievement;
− i believes r intends to achieve the goal.

S2

S1 S1

<r, failure(i, (<r, inform(i, ϕ)>, Goal not achieved))>
<r, failure(i, (<r, inform(i, ϕ)>, Plan not executed))>
<r, failure(i, (<r, inform(i, ϕ)>, reason))>

− i beliefs the plan has been executed;
− i beliefs the goal has been achieved;
− r beliefs i beliefs the plan has been

executed and the goal achieved.

S3

Figure 2 – The FIPA compliant goal delegation protocol

The main ideas behind our protocol analysis methodology are
compliance and intentional action. We assume that when an agent
sends a message (i) it does so intentionally, and (ii) it is desirable
that it complies with the message semantics. It results from the
above assumptions that, when a message is observed, the message
feasibility preconditions should hold (because the sender should
comply with the message semantics) and the sender intended the
message rational effects (because it sent the message
intentionally). For instance, when agent i receives message
<r, inform(i, P)>, it may assume that

BrP ∧ ¬ Br(BifiP ∨ UifiP) (inform feasibility preconditions)

and

IrBiP (the agent intends the rational effects of the message).

Given the above reasons, and acknowledging the fact that
protocol state changes reflect message sending/receiving, we may
attach to each protocol state, a set of propositions that should be
true from a normative point of view. The state that results of a
state transition from state S due to message <i, M> is the union of
state S with the feasibility preconditions of M and I(i, RE(M)), in
which RE(M) is the set of rational effects of M, and
I(i, ∆)={Ii(p): p∈ ∆} represents the fact that the sender intends all the
propositions in ∆.

Sl=Sk ∪ FP(i, j, Ml.k) ∪ I(i, RE(i, j, Ml.k)), in which Sl and Sk are
protocol states, Ml.k is the message that resulted in the protocol
state transition from state Sl to state Sk, RE(i, j, Ml.k) is the set of
Rational Effects of message Ml.k, indexed to the sender i and the
receiver j, and FP(i, j, Ml.k) is the set of Feasibility Preconditions of
message Ml.k indexed to sender i and receiver j. All protocols have
an initial empty state, the state before the initiating message is
sent.

In the following sections, we analyse the case of successful
execution of the goal delegation protocol, as defined in
section 3.1, using the concept of protocol-state just presented.

3.3 Goal delegation analysis

3.3.1 Step 1: Protocol initiation
Before the protocol is initiated, the protocol is in the initial state
(S0), which is the empty set. The protocol initiator (agent i) sends
message <i, request(r, <r, inform(i,ϕ)>)>, resulting in a protocol state
transition to state S1. According to the definitions presented in
subsections 3.1 and 3.2, S1 is composed by the achieve feasibility
preconditions and the intention of its rational effects.

S1={Bi(Agent(r, <r, inform(i, ϕ)>), ¬Bi(Ir Done(<r, inform(i, ϕ)>)), IiDone(
<r, inform(i, ϕ)>)}

That is, the observer is entitled to conclude that (i) the initiator
believes that the responder will be the agent of the inform
message; (ii) the initiator does not believe that the responder
already has the intention of having informed the initiator that the
plan has been executed and the goal has been achieved; and (iii)
the initiator wants the responder to inform it that the plan has
been executed and the goal achieved.

3.3.2 Step 2: the responder agrees
In the second step, the responder agrees to inform the initiator that
the plan has been executed and the goal has been achieved. This
message results in a new state transition to state S2. S2 is the union

of S1 with the feasibility preconditions of the agree message and
the intention of its rational effects. The feasibility preconditions
and the rational effects of the agree message are those specified
in [9].

S2=S1 ∪ {BrIr Done(<r, inform(i, ϕ)>, φ),¬ Br(Bifi Ir Done(<r, inform(i, ϕ)>,
φ) ∨ Uifi Ir Done(<r, inform(i, ϕ)>, φ)),IrBi Ir Done(<r, inform(i, ϕ)>, φ)}

in which φ is the condition under which the inform message will
be sent.

The observer of the agree message is now entitled to have
additional beliefs. The responder believes it has the intention to
inform the initiator that the plan has been executed and the goal
has been achieved. The responder does not believe the initiator
already knows anything about its intention. The responder intends
the initiator to believe it has the intention of informing it of the
success of the goal delegation process.

In order to check the soundness of the designed protocol, it could
be determined if each protocol state is consistent. S2 is obviously
consistent since the beliefs and intentions ascribed to each
participant are not contradictory.

3.3.3 Step 3: success
In the third step, the responder agent informs the initiator that it
has successfully executed the plan believed to achieve the
delegated goal and the goal has been achieved. This message
produces another protocol-state transition resulting in state S3.
Given the semantics of the inform message, as defined in [9], the
new state will be defined as follows

S3=S2 ∪ {Brϕ , ¬ Br(Bifiϕ ∨ Uifiϕ), IrBiϕ}

in which

ϕ≡∃ plan(Feasible(plan, G) ∧ Done(plan)) ∧ G

S3 = {Bi(Agent(r, <r, inform(i, ϕ)), ¬ Bi(Ir Done(<r, inform(i, ϕ)>)),
IiDone (<r, inform(i, ϕ))>), BrIr Done(<r, inform(i, ϕ)>, φ),
¬Br (Bifi Ir Done(<r, inform(i, ϕ)>, φ) ∨ Uifi Ir Done(<r, inform(i, ϕ)>, φ)),
IrBi Ir Done(<r, inform(i, ϕ)>, φ), Brϕ , ¬ Br(Bifiϕ ∨ Urfiϕ), IrBiϕ}

Among other things, the observer of this state will know that the
responder believes there is a plan that results in the delegated goal
becoming achieved; it also believes that plan has been executed;
and it also believes the goal to have been achieved. By virtue of
being the receiver of the message that caused this last state
transition, the protocol initiator is an observer of the last protocol
state (S3). Therefore, the initiator concludes the responder believes
to have achieved the desired goal. That is, in case of successful
termination, the goal delegation protocol fulfils the purpose of its
design.

Using a similar analysis, it could easily be shown that the protocol
also works appropriately in the other termination conditions.
From the point of view of protocol soundness, it can also be seen
that S3 does not contain contradictions. This is a good criterion to
assume the protocol to be well formed.

As can be seen, the last state of the protocol clearly shows that it
is legitimate to assume that the initiator knows the plan has
already been executed and the goal has been achieved. Therefore,
as previously argued (see section 3.1), the inform-done message
that would be generally necessary in the request protocol is not
needed in the goal delegation protocol.

3.4 Alternative design
As argued in section 3.1, the proposed definition of the achieve
performative does not fulfil all requirements for goal delegation.
Specifically, it does not follow from the semantics of the
performative that the protocol initiator does not believe the
responder to already have the intention to achieve the desired
goal. The proposed definition can only ensure that the responder
agent (the delegate) does not already intend to inform the initiator
that the goal has been achieved. Although this is not a very
important drawback, it would be desirable if it could e fixed.

The referred problem arises because SL, the language used to
express the semantics of the performative, is not rich enough to
overcome that difficulty. This subsection proposes to extend SL
with a new action operator that enables overcoming the mentioned
problem. The new operator, execute, has also been proposed
in [4].

Execute is a general-purpose action operator used to express the
action of executing a given action description passed as an
argument. Using execute, the protocol initiator can ask the
responder to execute any plan that achieves the desired goal,
instead of asking the responder to inform it that the plan has been
executed. Using this design, all goal delegation requirements will
be met, and the goal delegation protocol will more closely mirror
the request protocol.

We start analysing the way of expressing the action of executing a
plan that achieves the goal. Feasible(p, G) means that p can be
executed and achieves G. Any(p, Feasible(p, G)) refers a plan
(anyone) that can achieve G. Execute(Any(p, Feasible(p, G))) is the
action of executing the plan referred by Any(p, Feasible(p, G)), that
is a plan that achieves the desired goal.

Given the above elements, the achieve performative could have
the alternative definition

<i, achieve(r, G> ≡ <i, request(r, <r, execute(any(p, Feasible(p, G)))>>

that is characterized by:

FP of <i, achieve(r, G)>

− FP execute(any(p, Feasible(p, G))) [i\r]. The subset of the
feasibility preconditions of <r, execute(any(p, Feasible(p, G)))>
that are mental attitudes of i;

− Bi(Agent(r, <r, execute(any(p, Feasible(p, G)))>)). The sender
believes the receiver to be the agent of the action of executing
the plan;

− ¬Bi(Ir Done(<r, execute(any(p, Feasible(p, G)))>)). The sender does
not believe that the receiver already intends execute a plan
that achieves the goal.

RE of <i, achieve(r, G)>

− Done(<r, execute(any(p, Feasible(p, G)))>). The sender i can
reasonably expect that a plan that achieves the goal will be
done.

This alternative definition fulfils all the goal delegation
requirements presented in section 2:

• The initiator believes that the responder is skilled enough to
achieve the goal;

• The initiator believes the responder does not already intend to
achieve the goal;

• The initiator does not care about the plan to be used to
achieve the goal.

The first requirement can be shown to be implied by the achieve
feasibility preconditions, because the initiator can only send the
achieve message if it believes the responder to be the agent of the
action of executing the plan believed to achieve the goal.
Therefore it must believe the responder can do it.

The second requirement is exactly the second feasibility
precondition of the achieve performative.

The third requirement is captured by the action the initiator is
requesting the responder to perform: any plan that is believed to
achieve the goal.

This alternative definition has a consequence that must be
handled. The initiator does not ask the responder to inform it that
the plan has been executed and the goal has been achieved. This
will be handled at the protocol level, not at the performative level.
The new protocol definition is defined below, in which
ψ ≡ any(p, Feasible(p, G)):

1. <i, request(r, <r, execute(ψ)>)>

2. Action Alternatives

(a) <r, not-understood(i, (<i, request(r, <r, execute(ψ)>>, Reason
for not understanding))>

(b) <r, refuse(i, (<r, execute(ψ)>, Reason for refusing))>

(c) <r, agree(i, (<r, execute(ψ)>, Condition of action execution))>

3. [agreed] Action Alternatives

(a) <r, failure(i, (<r, execute(ψ)>, Plan was not completely
executed))>

(b) <r, failure(i, (<r, execute(ψ)>, Goal has not been achieved))>

(c) <r, inform(i, Done(ψ))>

The new protocol design is simpler because it has less alternatives
in step 3. Besides, it is more closely related to the request
protocol. This protocol specifies two cases of failure messages.

Although this alternative definition of the goal delegation
protocol is better than the one proposed in section 3.1, it relies
upon an extension of the SL language. Therefore, in the case
study described in the next section we assume the initial
definition.

4. CASE STUDY: AGENTCITIES EVENT
ORGANIZER SEVICE
The Agentcities event organizer fulfils service compositions using
the services, provided by the Agentcities network, needed to set
up a social event. It shows that agents offer dynamic and flexible
solutions for supply chains, especially to deal with unexpected
events and chain reorganization. In the reference scenario, a
conference chair attempts to develop a schedule for her
conference and to book the venues and services that she requires,
e.g., hotel, restaurant and amusement events. She delegates to the
event organizer the work, monitoring the progress of
arrangements. The event organizer service is available in the
Parma Agentcities node [1].

The main actors involved in the event organizer are:

• the user, i.e., the conference chair;

• the event organizer agent, i.e., the agent that tries to achieve
the global goal that the user submitted;

• the solvers, i.e., the skilled agents that search the needed
services and negotiate the contracts for buying them with the
service provider agents;

• the service provider agents.

The Figure 3 shows some of the ontology classes used in the agent
interactions described in the following subsections. These classes
are part of the complete Event Organiser ontology.

The process starts when the chair decides to organize the
conference and requests the event organizer agent to set up a set
of needed services, fixing some constraints and a priority for each
service. It finishes when all mandatory services are bought or
reserved. These interactions are governed thanks to the FIPA-
Request protocol for the goal delegation case proposed in
section 3.1, where the event organizer plays the role of the
initiator and the solver plays the one of the responder. Due to
some limitations in the FIPA-ACL semantics, some interaction
rules are implicitly defined in the agent code, e.g., the deadlines
that the solver has to respect for the plan execution.

The following step can be iterated until the conference is fully
organized.

4.1 Conversation 1: Goal Delegation
This conversation is carried out between the event organizer and
the solver.

4.1.1 Protocol initiation
The chair fixes through a Web page the finite set of services that
she wants to buy for the conference and a finite set of associated
constraints. These parameters are translated in a global goal
assigned to the event organizer, e.g., “make it so that all the 20
attendees have a dinner together and rooms booked for five nights
in nearby hotels”.

For the sake of simplicity we assume that the idea of “constraints”
or “service priority” will not be exchanged among the agents.
Only the event organizer agent knows about the full set of
required constraints and the priorities of the services. This eases
the problem solving process because the event organizer agent
centralizes the validation of constraints without delegating it to
solvers.

Then, the event organizer decomposes its given global goal into
sub-goals, each of which is proposed, with the following
performative, to one particular problem solving agent (so-called
solver), based on its functional capabilities to achieve the goal
assigned.

(request
 :sender (agent-identifier : name EventOrganizerAgent)
 :receiver (agent-identifier : name RestaurantSolverAgent)
 :content
 (inform
 :sender (agent-identifier : name RestaurantSolverAgent)
 :receiver (agent-identifier : name EventOrganizerAgent)
 :content (exists ?plan
 (and (and (feasible (?plan γ))(done ?plan)) γ))
 :language fipa-sl
 :protocol goal-delegation
 :ontology Conference_Organizer_Ontology1.0
 :conversation-id goal02
)
 :language fipa-sl
 :protocol goal-delegation
 :ontology Conference_Organizer_Ontology1.0
 :conversation-id goal01
)
where

γ =(exists ?cID
 (and
 (regulate (Contract: id ?cID) (Dinner :table 10))
 (commit-to(Contract: id ?cID) (Buyer :AID EventOrganizerAgent))))

The solvers are either newly created by the event organizer as
instances of functional agent classes or have been spawned in the
past and therefore already exist. In our scenario a sub-goal
corresponds to the search of suitable contracts for the services
asked by the chair, without considering the cross-services
constraints, e.g., the solver searching for restaurants does not
consider that the restaurant cannot be too far away from the hotel,
only the event organizer agent deals with such a constraint.

4.1.2 The solver agrees
The solver agrees to achieve the assigned sub-goals and builds a
plan.

4.1.3 The solver executes the plan
Each solver uses the search infrastructure services offered by the
Agentcities network architecture to find suitable service providers.

SELLER

sell()

BUYER

CONTRACT
id : string

PARTY
2..n

1

2..n

1

commit to

SERVICE PROFILE
serviceId : string

SERVICE
regulate

describes

FOOD

DINNER

DATE

PERIOD

valid for

DATE start

end

table : int

Figure 4 – Event Organizer Ontology

The solver chooses the providers that fit its tasks best. This can be
done through a direct interaction or through a market place. Once
a suitable service provider is found, the solver negotiates with it to
reach a preliminary agreement for a contract that regulates the
requested service.

4.1.4 The solver informs the event organizer about
the contract
The solver informs the event organizer the sub-goal is achieved
and it knows about some contracts.

4.2 Converstion 2: Contract Retrieval
This conversation is carried out between the event organizer and
the solver.

The event organizer believes that the solver has negotiated at least
one contract to purchase the assigned service. It starts a FIPA-
Query protocol, where it plays the role of initiator and the solver
plays the role of responder, to get such a contract. The solver
gives its best proposal back to the event organizer for a
subsequent use.

 (query-ref
 :sender (agent-identifier : name EventOrganizerAgent)
 :receiver (agent-identifier : name RestaurantSolverAgent)
 :content
 (any ?cID
 (and
 (regulate (Contract: id ?cID) (Dinner :table 10))
 (commit-to(Contract: id ?cID) (Buyer :AID EventOrganizerAgent)))
 :language fipa-sl
 :protocol fipa-query
 :ontology Conference_Organizer_Ontology1.0
 :conversation-id getcontract01
)

(inform
 :sender (agent-identifier : name RestaurantSolverAgent)
 :receiver (agent-identifier : name EventOrganizerAgent)
 :content (=
 (any ?cID
 (and
 (regulate (Contract: id ?cID) (Dinner :table 10))
 (commit-to(Contract: id ?cID) (Buyer :AID
 EventOrganizerAgent))
)
 cID001)
 :language fipa-sl
 :protocol fipa-query
 :ontology Conference_Organizer_Ontology1.0
 :conversation-id getcontract02
)

4.3 Conversation 3: Services Acceptance
This conversation is carried out between the event organizer and
the chair.

Once each instance of the protocol with the solvers ended, the
event organizer agent has enough information to build the global
plan satisfying the chair’s requirements. To do so, it first
composes the proposals received from the solvers and validates
the cross-service constraints. If a consistent solution is found, it is
proposed to the chair for a final acceptance.

Now, the event organizer agent informs the chair about the
contracts she has to sign for achieving the global goal. If no
consistent solution is found, the event organizer agent iterates the
previous steps until an acceptable solution is found or until the
chair decides to change some constraint.

The iteration consists of assigning new sub-goals to the solvers
exploiting the knowledge about which cross-service constraints
has not been satisfied. For example, if the process failed because
the restaurant and the hotel were too far from each other, the new
sub-goal will be “operate so that the attendees have dinner in a
restaurant within 1 Kilometre from the hotel and give me back a
new suitable contract for that”.

4.4 Conversation 4: Services Purchase
This conversation is carried out between the event organizer and
the service provider agents.

Once the chair accepted the proposed solution, the event
organizer agent starts a FIPA-Request protocol with the service
provider agents in order to buy the service directly from them.

(request
 :sender (agent-identifier : name EventOrganizerAgent)
 :receiver (agent-identifier : name ServiceProviderAgent)
 :content (sell cID001(Buyer :AID EventOrganizerAgent))
 :language fipa-sl
 :protocol fipa-request
 :ontology Conference_Organizer_Ontology1.0
 :conversation-id getcontract01
)

5. CONCLUSION
In this paper we proposed a FIPA compliant protocol to perform
goal delegation between two agents. The motivation of this work
starts from a real need, i.e. to build an application for the
Agentcities.RTD project where agents delegated to other skilled
agents their goals We approached the problem with the idea to
only use what FIPA provides.

We proposed a framework for protocol analysis and we used it to
validate our goal delegation protocol that uses the FIPA ACL
semantics as it is. We argued that the protocol still have a minor
drawback and we proposed a new SL operator execute that allows
to fulfil all the requirements for goal delegation pointed out in the
first part of the paper.

Finally we described the concrete application that was realized
thanks to the effort of this work.

6. ACKNOWLEDGMENTS
The research described in this paper is partly supported by the EC
project Agentcities.RTD, reference IST-2000-28385. The
opinions expressed in this paper are those of the authors and are
not necessarily those of the Agentcities.RTD partners.

7. REFERENCES
[1] Agentcities.RTD, reference IST-2000-28385,

http://www.agentcities.net

[2] Bauer B., Müller J.P., Odell J.R.E, Agent UML: A
Formalism for Specifying Multiagent Interaction, In Paolo
Ciancarini and Michael Wooldridge (eds) Agent-Oriented
Software Engineering (Berlin 2001), Springer, 91-103.

[3] Bergenti F., Burg B., Caire G., Poggi A. Deploying FIPA-
compliant systems on handheld devices. IEEE Internet
Computing, Volume 5 Issue 4 (July-Aug. 2001), 20-25.

[4] Botelho L. M., Antunes N., Ebrahim M., Ramos P. Greeks
and Trojans Together, Submitted paper, 2002.

[5] Castelfranchi C., Falcone R. Socio-Cognitive Theory of
Trust. http://alfebiite.ee.ic.ac.uk/docs/papers/D1/ab-d1-
cas+fal-soccog.pdf.

[6] Colombetti M. A Commitment-Based Approach to Agent
Speech Acts and Conversations. In Proc. Workshop on
Agent Languages and Communication Policies, 4th
International Conference on Autonomous Agents (Barcelona
2000), 21-29.

[7] Castelfranchi C., Pedone R. A Review on Trust in
Information Technology.
http://alfebiite.ee.ic.ac.uk/docs/papers/D1/ab-d1-cas+ped-
trust.pdf.

[8] Freire J., Botelho L. M. Executing explicitly represented
protocols. Submitted paper, 2002.

[9] FIPA spec. XC00037H. FIPA Communicative Act Library
Specification. http://www.fipa.org/specs/fipa00037/.

[10] FIPA TC Semantics Call for Information,
http://www.fipa.org/docs/output/f-out-00099/ f-out-
00099.pdf.

[11] Finin T., Labrou Y. KQML as an agent communication
language. In J.M. Bradshaw (ed.), Software Agents, MIT
Press, (Cambridge, MA, 1997), 291-316.

[12] Giunchiglia F., Mylopoulos J., Perini A.. The Tropos
Development Methodology: Processes, Models and
Diagrams. Submitted at AAMAS 2002.

[13] Pitt J., Kamara L., Artikis A.. Interaction Patterns and
Observable Commitments in a Multi-Agent Trading
Scenario. http://alfebiite.ee.ic.ac.uk/docs/papers/D1/ab-
d1-pitkamart-ipoc.pdf.

[14] Singh M. P. Agent Communication languages: Rethinking
the principles. IEEE Computer, 31 (12) (1998), 40-47.

