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This paper describes an object-oriented framework for ontology 
representation, which was derived from the analysis of a set of use 
cases for ontology services provided by ontology agents in open 
agent networks. The described use cases are converted into a set 
of requirements for the Information System supporting the 
ontology service. 

Each ontology on the server has classes, properties and methods. 
Classes have attributes, which are properties, methods and 
axioms. Attributes have facets. Methods have arguments, return 
value and method definition through axioms. Classes and 
properties may be arranged in hierarchies. The proposed 
framework accommodates the expression of arbitrary axioms 
about the entities in the ontology. We propose a situation calculus 
approach for describing the action methods of the ontology. 
Action methods are described by state change and state constraint 
axioms. The frame problem is handled assuming that nothing 
changes unless explicitly stated. 

We present the definition of several relations between entities of 
different ontologies which allow inferring global relations 
between those ontologies. Finally, we propose Extended-SL as the 
Representation Language of O3F. 
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Ontologies are very useful in a wide range of situations [14][10]. 
In the less complex extreme of the range, ontologies may be used 
by agent designers to build their agents for specific domains. 

Using a widely accepted and disseminated ontology, agent 
designers can implement agents that may understand a large set of 
message contents in their application domain. In the more 
complex extreme of the range, ontologies would be dynamically 
and incrementally developed, acquired and used by the agents – 
one of the main uses would be text mining. In this paper we focus 
our attention in an intermediate complexity problem. We focus on 
the problem of creating domain independent agents that use the 
ontologies as a means of finding other agents that provide desired 
services and information; and as a means for tailoring domain 
independent information processing mechanisms to specific 
domains. 

In Agentcities [16], most likely the largest agent network ever 
implemented, there are several value-added types of agents, which 
must dynamically discover and integrate information and services 
for their clients [2]. For instance, a Personal Assistant Agent 
(PAA) may want to find an agent that can book a table in a 
restaurant. In this scenario the PAA must look for ontologies 
describing services whose execution results in a table being 
booked.  Possibly, there are different such services. A restaurant 
representative agent may have the service BookTable that results 
in a table being booked. The Evening Organizer [4] is another 
agent providing a more complex service that might also result in a 
table being booked. Therefore, the procedural description of the 
service would not help the PAA find the service provider. The 
best way to find it is by searching for ontologies describing the 
world states that result of the execution of services. Since 
services, in object-oriented frameworks, are provided by action 
methods, it is necessary that ontologies provide declarative 
method description.  

This paper makes some contributions to the state of the art in 
ontologies. First, it presents an explicitly assumed object oriented 
framework for ontology representation, while similar approaches 
use a more frame-oriented dressing. We show that our framework 
supports the representation of DAML+OIL[6] ontologies and 
Ontolingua[7] ontologies. One of the most relevant contributions 
is the proposal to include method definitions in the ontology, 
especially action methods (methods whose execution changes the 
state of the world). Other frameworks, especially Ontolingua, 
allow the definition of functions and relations but not actions. The 
other major contribution is the formal definition of relations 
among entities in different ontologies from which it is possible to 
infer global relations between ontologies. Another contribution is 
the use of FIPA SL [9] as the surface representation language of 
the framework. 
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The remaining sections of the paper are organized as follows. 
Section 2 presents a set of use cases for an ontology service 
provided by an ontology agent in an open agent network. In 
Section 3, the presented use cases are converted into a set of 
requirements for the ontology information system. The 
information system is described through a UML class diagram. 
FIPA SL is proposed as a surface language to represent the 
ontology. Section 4 argues that the information system describe in 
section 3 is not enough from the semantic point of view. It adds 
provision for hierarchic information representation; it includes 
arbitrary axioms in the proposal, especially axioms for the 
declarative description of action methods. Section 5 shows that 
the presented framework supports inference about relations 
between ontologies. Section 6 discusses the potential of the 
presented approach, its advantages and disadvantages, comparing 
it with related work. Finally, section 7 presents conclusions. 
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Practical cases in the Agentcities Project revealed several 
shortages of commonly used ontology representation frameworks 
and the need to create an improved framework. This section 
describes a set of use-cases originated in the Project. 

But how will an agent, in fact, query for ontologies and agents 
that provide/use those ontologies? This section shows some use-
cases of a broker agent as an example. 

Imagine an Agent that works as a broker of all kinds of Restaurant 
Services. We will call this agent P,QSRUT�V . In order to provide/use 
information about restaurants Fredo will look for agents that work 
with any Restaurant Ontologies. First, Fredo will look for the 
domain ontologies by asking the Ontology Agent (OA) the 
following question: “What are the ontologies that define/use class 
‘Restaurant’?” . In a generic and more complete way, the question 
is: “What are the ontologies that define class C with a set of 
attributes including attributes { A1, A2,…, An} ?” . 

With this information, Fredo will be able to look for agents 
providing services based on the ontologies returned by the OA. 

Now, imagine that Fredo wants to know what kind of information 
is delivered in those ontologies (related to information services) 
or special information of the class like its key attributes. It would 
have to ask OA something like: “What are the attributes of the 
class Restaurant?”  or “What are the sets of attributes that 
univocally identify the instances of class Restaurant defined in 
ontology Restaurant-Information-Service-Ontology?”. 

The same applies if Fredo wishes to know something about a 
class’s methods. For instance, Fredo is looking for ontologies that 
allow providing Restaurant Booking Service. This way it would 
have to ask the OA the following: “What are the ontologies that 
define class Restaurant with method W�X'X'Y[Z'\^]'_ ` , which takes an 
String (Table Name) and a String (Booker Name)?”. 

More generally, what are the ontologies that define class C with a 
set of methods including the methods { (M i, <(Pi.1, Ci.1), (Pi.2, Ci.2), 
…., (Pi.m, Ci.m)>, Ci)} , and a set of attributes including attributes 
{ (Aj, Cj)} , in which Pi.l is the name of argument l of method M i 
and Ci.l is the class of the argument l of method M i, A j is the name 

of attribute j and Cj is the class of attribute j, and Ci is the class of 
the value returned by the method M i? 
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In order to be able of handling the interactions described in 
section 2, the OA must have the following information: the set of 
properties of the ontology, the set of methods of the ontology, and 
the set of classes of the ontology. Each property is described by 
property name, property type (i.e., class or a primitive data type) 
and unique identifier. Each method is described by method name, 
a set of parameters, i.e., parameter name and parameter type, by 
the type of the method return value if there is one or void if none 
exists, and by a unique identifier. Each class is described by the 
class name, a set of attributes and a set of methods. Each class 
must also specify the set of attributes that univocally identify the 
instances of the class that is the set of key attribute.qsrutgvxwUy�z

 shows the UML class diagram of the information system 
necessary to represent ontologies, following the presented 
analysis. The presented class diagram states that properties can be 
of two types: a known-type like String, Integer or Float 
(DataType); or a Class. Also visible in the class diagram is the {^|}| ~U� �g�'|}�  definition. When associated to a class, a property 
becomes an attribute of that class. It is also possible to declare 
alternative sets of key attributes of a class. Attributes have facets 
that enumerate a set of characteristics like cardinality, numeric 
maximum and others. The Information System described in Figure 
1 can capture hierarchic relations among classes and among 
properties. However, arbitrary axioms, functional and relational 
definitions, and state change axioms cannot easily be captured in a 
traditional information system – some knowledge representation 
language is also needed. 

Ontolingua is the best-known ontology representation framework 
allowing the representation of arbitrary axioms. Here we present 
an alternative approach using FIPA SL language. 

The information system represented by the class diagram can be 
manipulated through the general-purpose predicate and function � �'��� �g�g�������

 and �����}�[�����  respectively (see [1]).  

Ontologies may be added to the Information System using the 
predicate � �'���}�'�g����� � . 
The following example means that the ontology named 
RestaurantOntology created by the Agentcities Consortium is an 
instance of the class Ontology. 

( i nst ance ( Ont ol ogy : name Rest aur ant Ont ol ogy 
: aut hor  Agent c i t i es)  Ont ol ogy)  

Particular classes may also be inserted in the class ‘Class’  using 
the ¡ ¢'£U¤ ¥g¢g¦�§�¨ © . For example, ( i nst ance ( Cl ass : name 
Rest aur ant )  Cl ass)  means that the class named 
‘Restaurant’  is an instance of class ‘Class’ . 

Using the predicate ª «[¬U­ ®'«g¯�°�±�² , it is also possible to create 
properties. ( i nst ance ( Pr oper t y : name maxPr i ce)  
Pr oper t y)  means that ‘maxPrice’  is an instance of class 
‘Property’ .  
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The associations between the classes are represented using the 
special-purpose class Ì�Í�ÍUÎ'Ï½Ð Ñ�ÒÃÐ Î'Ó  which specifies the relation 
between two or more classes. For example, ( i nst ance 
( Associ at i on : name Cl assOf Ont ol ogy  
: ar gument s ( set  ( AAr g : name Cl ass : key name 
: obj ect  Rest aur ant )  ( AAr g : cl ass Ont ol ogy 
: key name : obj ect  Rest aur ant Ont ol ogy)  
: at t r i but es ( set ) )  Associ at i on)  means that 
Restaurant (of class Class) is associated with RestaurantOntology 
(of class Ontology). 

The option of representing associations by the special-purpose 
class Ô�ÕÉÕ�Ög×MØ Ù^ÚÃØ Ö[Û , which specifies the classes of the associated 
entities, allows to reason about the way classes are associated with 
each other. Using the proposed approach, agents can dynamically 
add new entities and relationships between them to the ontology, 
and they can also query the ontology service about existing 
entities and the relationships between them. 

Through the message in Figure 2, Fredo asks the Ontology Agent, 
which provides an ontology service, to tell it the classes of 
ontology RestaurantOntology.  

The expression ( val ue ?c name)  represents the value of 
attribute ‘name’  of the object ?c, which in this case is an instance 
of class Class. The name of a class is its unique identifier. The 
detailed reading of the message in Figure 2 is “Send me the 
instances of class Class that are associated to the Ontology 
RestaurantOntology, through the association ClassOfOntology” . 

 

( quer y- r ef  : sender  Fr edo : r ecei ver  ( set  SomeOA)  
 : cont ent  “ (  
  ( al l  ?c ( exi st s ?ar gs ( and 
   ( i nst ance ?c Cl ass)  
   ( i nst ance 
      ( Associ at i on 
        : name Cl assOf Ont ol ogy 
        : ar gument s ?ar gs)  
        : at t r i but es ( set  )  
      Associ at i on)  
   ( member  
     ( AAr g 
       : c l ass Ont ol ogy : key name 
       : obj ect  Rest aur ant Ont ol ogy)  
     ?ar gs)  
   ( member  
     ( AAr gs 
       : c l ass Cl ass : key name 
       : obj ect  ( val ue ?c name) )  
     ?ar gs) ) ) )  
 ) ”  
 : l anguage Ext ended- SL 
)  ÜµÝ}ÞgßxàUá�â�ãåäæß<á�à�ç^Ý}è<Þ�éëê<á�ì'è^éëì[í}ì[Þ½çÆîSáMàÉï�Ý}ð�á
The presented framework, O3F, allows the representation of 
ontologies originally described in other frameworks, such as 
Ontolingua and DAML-OIL. Furthermore, the use of Extended-
SL as the ontology representation language facilitates ontology 
sharing between agents. 
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The information system that supports the minimum requirements 
identified for the Ontology Service provides only a very shallow 
semantics (see section 3).  

Some useful relations between the entities of the ontology cannot 
be represented by the above system. Some provision must be 
made in order to represent arbitrary axioms in the ontology. For 
instance, we might be interested in expressing some constraint 
between two attributes of a given class through a set of axioms, 
such as A1 must take a value between the value of A2 and its 
double. 

Finally, in many circumstances, it is necessary to clearly define 
the methods of the ontology. Sometimes, the name, the return type 
and the arguments of the method are not enough – agents must 
reason about what the method is. Functional and relational 
methods may be defined declaratively through a set of axioms. 
Methods that change the state of the world can also be 
declaratively defined using situation calculus, through the 
specification of the relation between the input state and the output 
state. 

In the next subsection we show that FIPA SL can be used to 
define relational and functional methods through sets of axioms. 
Sub section 4.2 presents one of the main contributions of the 
paper: a proposal to represent action methods through axioms 
about the way the method changes the state of the world when it is 
executed. 
ÿ��������	��
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Relational and functional methods may be defined by sets of 
statements in the language of first order logic. For instance, if it is 
necessary to define a method PriceDiff of the class Restaurant that 
computes the difference between the maximum and minimum 
prices, we may use the following axiom 

∀r Instance(r, Restaurant) ∧ IsNumber(r.maxPrice) ∧ 
IsNumber(r.minPrice) ⇒ r.PriceDiff() = r.maxPrice – r.minPrice 

This axiom can easily be represented in Extended SL[1] as 
follows: 

(forall ?r (implies (and (instance ?r Restaurant) (isNumber (value 
?r maxPrice)) (isNumber (value ?r minPrice))) (= (value ?r 
PriceDiff (sequence)) (- (value ?r maxPrice) (value ?r 
minPrice))))) 

Relational methods and arbitrary constraints may also be defined 
in SL. 

Using this possibility, agents can dynamically add constraints, 
relational and functional definitions to the ontologies. If those 
definitions are kept in the ontology service information system, 
then they may also be consulted to be further reasoned upon. 
'�( )+*�,	-�.
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Action Methods are methods whose execution changes relevant 
aspects of the current state of the world. Therefore, if we want to 
declaratively represent action methods in the ontology, we need 
some provision to talk about world states. The good thing about 
states is that they allow us to represent changes in the world. In 
this paper we propose to describe action methods in ontologies 
using <>=@?@A#B�?C= D�EGFHB�I FHA0IJAK< , which was introduced by McCarthy and 

Hayes in 1969 [13] for describing how actions and other events 
affect the world. 

In this proposal, state-dependent properties are described by 
functions that map objects into sets of world states in which the 
objects have that property. For instance, Booked(Table1, A) 
represents the set of world states in which the Table1 (of a certain 
restaurant) has been booked by A. Functions that describe states 
of the world such as Booked/2 are called fluents. 

The predicate Holds/2, which takes a fluent and a state, is used to 
say that the condition described by the fluent holds in that world 
state. For instance, Holds(Booked(Table1, A), S0) means that, in 
state S0, Table1 is booked by A. Actually, Holds(p, s) ≡ s∈p but 
we use Holds instead of ∈ because it improves readability.  

In order to emphasize the fact that fluents represent conditions of 
the world, it is common practice to use logical notation to 
represent set operators that will be applied to fluents. ¬ denotes 
compliment, ∧ and ∨ denote intersection and union, and (A ⇒ B) 
means that B is a subset of A. 

In this approach, action methods are represented by functions, and 
concrete method invocations are represented by action 
designators. For instance, the action method BookTable may be 
invoked with a certain sequence of arguments: the table and the 
person on behalf of whom the table is booked: BookTable(Table1, 
A). 

Finally, the function L0M  maps pairs of method invocation and 
world state into world states. It represents the state that results of 
the invocation of a given method with a given sequence of 
arguments in a given world state. 

Methods are described by a set of state change axioms that 
represent the way their invocation changes the world, as in the 
following example: 

∀t, x, s Holds(Free(t), s) ⇒ Holds(Booked(t, x), Do(BookTable(t, 
x), s)) 

If a table is free in a certain state, then it will become booked by x 
in the state resulting of x booking that table.  

To properly define what happens in the world when an action 
method is executed, we also need to state several axioms that 
represent general constraints that hold in any world state. These 
are called state constraints. 

∀t, x, s Holds(Booked(t, x), s) ⇒ ¬∃y (Holds(Booked(t, y), s) ∧ y 
≠ x) 

If a table is booked by someone, it can’ t be booked by someone 
else in the same world state. 

Using the state change axioms that describe the way the world 
changes by invoking methods, we may know what becomes true 
when the method is invoked. Using state constraints we may 
conclude what becomes false when methods are invoked. In the 
case of table booking, we know that after a table has been booked, 
it becomes booked by someone, and we also know that it is not 
booked by anybody else. 

State change axioms and state constraint axioms describe what 
becomes true and what becomes false when methods are invoked, 
but they don’ t describe what remains the same after methods are 
invoked. This is the so-called NPO�Q0RTSVUWOYX0Z�[ S\R . 



The frame problem may be solved by writing sets of frame axioms 
that explicitly state what does not change when methods are 
invoked. However this is not practical in realistic situations 
because for each method, there are so many things that stay the 
same that we would need a tremendous quantity of frame axioms. 
The alternative that we chose is a more practical way of handling 
the frame problem, which assumes that, if nothing is stated 
otherwise, things do not change. 

The above axioms can also be written using FIPA SL syntax. 

(forall ?t (forall ?x (forall ?s 
  (implies (Holds (Free ?t) ?s) 
    (Holds (Booked ?t ?x) (Do (action ?x (BookTable ?t ?x)) ?s)))))) 

(forall ?t (forall ?x (forall ?s 
  (implies (Holds (Booked ?t ?x) ?s) 
    (not (exists ?y (and (Holds (Booked ?t ?y) ?s) (<> ?x ?y)))))))) 

Using the proposed approach, action methods can be declaratively 
described in terms of what changes in the world and what stays 
the same when they are invoked. Contrarily to what happens with 
DAML-S Service Descriptions [5], the presented approach allows 
agents to access to and to reason about ontology described 
methods, not in terms of their internal control structure but in 
terms of the changes they can bring about. This is a clear 
advantage since there are several ways a method can be internally 
engineered in order to effect the same changes. 

This approach is also amenable of being expressed in FIPA SL, 
which is an enormous advantage given that SL is being used both 
in FIPA Platform Management Specifications and in the 
Agentcities project, but also because of the computational support 
already available for processing SL. 
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The FIPA Ontology Service Specification [8] presents a 
framework, explicitly based on OKBC[3], which specifies the 
behavior of a FIPA compliant Ontology Agent. This specification 
includes two different ontologies: the Meta Ontology, which deals 
with the objects specific to an ontology (classes, slots, etc), and 
the Ontology Service Ontology (OSO), which deals with the 
operations on ontologies and the relations between ontologies. 

The OSO defines six possible classifications for the relationship 
between two ontologies: t�u0vJt>w#x\y z�w , { |�}>~%�C{ �>�%� , �\���0� �\���@�\��� , �Y� ���#�K��� ���
� �������Y� �%� ���0� � , ���>�0�P�  ¢¡¤£ ¥��0¦#§\� ��£ �%¨#�@�  ©�ª0«�©�¬�¬®­�¯\°0±¤² ­�©0ª#³\´ ©�² ©%µ�´@¶ . This 
classification presents a significant shortage: it applies to the 
whole ontology, ignoring the relation between individual classes. 
This implies that if we have two ontologies that share the same n 
classes but that have each one additional class that is not shared, 
they will simply be considered ·¹¸\º�»K¼ ½V¾À¿ Á�º�Â�ÃY¼ º%¿ º�Ä0¼ ¸ . 
To overcome this lack of expressiveness, we present an approach 
that defines relationships between the entities of two ontologies 
(e.g., classes and attributes). Then, the more global relations 
between ontologies are inferred from the more specific relations 
between the lower level entities. This approach allows inferring 
not only global relations between ontologies but also relations 
about the entities in the ontology.  

Ontologies define complex entities from structural and functional 
relationships between simpler entities. In the end, every complex 
concept is represented in terms of a pre-defined and limited initial 
vocabulary. In the object-oriented ontology representation 
framework described in sections 3 and 4, the fundamental 

building blocks of the ontology, that is, the elements in its 
vocabulary, are basic data types (class DataType in ÅWÆ@Ç�È¢É\ÊÌË ), 
facet names, property names, method names and class names. 
Hereafter, the set of non-decomposable elements of the ontology 
is termed its ÍÏÎ#Ð\Ñ ÒsÓ\Ô0Ò>Î�Í0Õ�Ö Î0×JØ . The set of all concepts of the 
ontology, either atomic or compound, will be called its Ù�Ú%Û Ù>Ü�Ý�Ù>ÝÞHß�à>á%â�ã0ä á�åJæ . Therefore the ç�è%é ç>ê�ë�ç>ëíì\î�ï\ð�ñ0ò�ó ð�ôCõ  of a given 
ontology includes its öÏ÷�ø\ù ú�û\ü�ú\÷�ö0ý�þ ÷�ÿ�� . 

The degree to which one ontology is translatable to another 
ontology depends on the mapping between elements in the ������� 	
�� 	��
����� �����  of the first ontology into (atomic or complex) 
elements of the ����� ���������������� 
!�"�#$ �%�&  of the other ontology. 
Ontology A is completely translatable to ontology B only if there 
is a total mapping from the elements in the '�(�)�*$+-,/.�+�(
'�0�1 (�2�3  of A 
to elements of the 4�5�6 4�7�8�4�8:9�;�<�=
>�?�@ =�ACB  of B. Certainly, this is not 
a sufficient condition, but it is necessary. 

In certain circumstances, it would be possible to infer mappings 
from the D�E�F�G HJI�K�H�E�D�L�M E�N�O  of one ontology into another ontology 
from global relationships between the ontologies. For instance, if 
two ontologies have exactly the same structural and functional 
relationships and they are known to be completely translatable 
then it will be possible to infer total mappings between their basic 
vocabularies that satisfy the global relationships between them. 
However, even in cases like this, there may be more than one such 
mapping. 

In the remaining of this section, without lack of generality, we 
will adopt a bottom-up point of view, where the mapping from the 
basic vocabulary of one ontology to the other ontology is known PQSRUT V�RUT . 
Being L(A) the basic vocabulary of ontology A, and V(A) the WYX�Z W�[�\�W�\^]�_�`�a�b�c�d a�eCf  of ontology A, we define Ia.b:L(A)→V(B) as 
the g�h�i�j kml�n�k�h�g�o�p h�q�rtsuhYv�vwj xzy  from A to B Ia.b is a partial function 
that maps elements of the {�|�}�~ ��������|
{���� |����  of ontology A into 
elements of the �����$����������������������� �����  of ontology B. 

Having the basic vocabulary mapping Ia.b, it is possible to define 
relationships between compound concepts of two ontologies with 
respect to that mapping. 

Generally speaking, the relations that will be defined in the 
remaining of the section are such the relation between two 
composite concepts is reduced to relations between their parts. 
���������U� �
�C� ���t�¡ £¢S���Y¤S¥������ ¥��

Definition 1: Property P1 in ontology O1 is translatable to 
property P2 in ontology O2, with respect to the ¦�§�¨�© ª¬«�­�ª�§�¦�®�¯ §�°$±² §Y³�³´© µ/¶  IO1.O2 iff the name of P1 is mapped to the name of P2 by 
IO1.O2, and the type of P1 is translatable to the type of P2, by 
IO1.O2. ·�¸�¹�º�»U¼ ¹
½C¾ ¿�ºt¿¡À£ÁS¹�Â�Ãz½ »

Definition 2: Facet F1 of ontology O1 is translatable to facet F2 of 
ontology O2, with respect to the Ä�Å�Æ�Ç ÈuÉ�Ê�È�Å�Ä�Ë�Ì Å�ÍCÎ^ÏmÅÑÐ�ÐwÇ ÒzÓ  IO1.O2 
iff the name of the facet F1 is mapped to the name of facet F2 by 
IO1.O2, and the value of F1 is the same as the value of F2. 

This definition assumes that the values of facets are not subject to 
translations, which is somehow restrictive. An alternative 
approach would be to add the possible values of facets to the Ô�Õ�Ö�× ØuÙ�Ú�Ø�Õ�Ô�Û�Ü Õ�ÝCÞ

 of the ontology. This way, the translation would 
be handled by the basic vocabulary mapping function IO1.O2. 
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Definition 3: Attribute A1 of class C1 of ontology O1 is 
translatable to attribute A2 of class C2 of ontology O2 with 
respect to the í�î�ï�ð ñ�ò�ó�ñ�î
í�ô�õ î�ö�÷ùøuîYú�úwð û/ü  IO1.O2, iff the property 
associated to C1 by A1 is translatable to the property associated to 
C2 by A2 with respect to IO1.O2, and for each facet F1.i of A1, 
there is a facet F2.j of A2 such that F1.i is translatable to F2.j with 
respect to IO1.O2. ý�þÑÿ������ ÿ���� 	
��	
������� ��	
���

Definition 4: Method M1 in ontology O1 is translatable to method 
M2 in ontology O2, with respect to the �
�
��� ������������ �! ��"�#%$��'&�&(� )�*  
IO1.O2 iff the name of M1 is mapped into the name of M2 through 
IO1.O2, the return type of M1 is translatable to the return type of 
M2, and if for each argument A1.i of M1 there is an argument 
A2.j of M2 such that A2.i is translatable to A2.j with respect to 
IO1.O2, and if the axiomatizations of M1 and M2, respectively ∆1 
and ∆2 satisfy the relation +�,'-�.�/ O1.O2(∆1) logically implies ∆2, in 
which TransO1.O2(α) is the translation of α of ontology O1 into the 
correspondent concept in ontology O2 with respect to the 021
3�4 56�7 5�1�0�8�9:1�;�<>=�1'?�?@4 A�B  IO1.O2. 

The main problem with this approach is to show that C�D'E�F�G
O1.O2(∆1) logically implies ∆2. In general, logical 

implication is a hard problem. For the first order logic, it is semi 
decidable. That is, it is possible to create an algorithm that shows 
that H�I'J�K�L O1.O2(∆1) logically implies ∆2, if that is actually the 
case. However, it is not possible to create an algorithm that is 
guaranteed to stop when M�NPO�Q
R O1.O2(∆1) does not imply ∆2.  

This solution although complex, is very elegant and powerful in 
the sense that it provides automatic means that allow determining 
the degree to which a method is translatable into another one. 

The problem of showing if S�T'U�V
W O1.O2(∆1) logically implies ∆2, 
although hard and semi decidable, can be approximately handled 
by robust theorem proving techniques as resolution with some 
restrictive hypothesis such as the Closed World Assumption.  

Another alternative would be to add the set of methods in the 
ontology to its X2Y�Z�[ \^]�_�\�Y`X�a�b Y�c�d . This way, the e2f�g�h ikj�l�i�f`e�m�n f�o:pq fPr�r(h s�t , IO1.O2, would provide uwvyx�z {�x|z  mappings for all the 
defined methods. 
}�~'������� ����� �
��~|��� �`��� ���
�(����� �������k��� ���P�����

Definition 5: A class C1 from ontology O1 is �|� ���
����� ���
� �'�����|� ��� �`��� �  to class C2 from ontology O2 with respect to IO1.O2 
iff the name of C1 is mapped to the name of C2 by IO1.O2, for each 
attribute A1.i of C1 there is an attribute A2.j of C2 such that A1.i 
is translatable to A2.j with respect to IO1.O2, for each method M1.i 
of C1 there is a method M2.j of C2 such that M1.i is translatable 
to M2.j with respect to IO1.O2, for each mandatory attribute A2.k of 
C2 there must be an attribute A1.n of C1 such that A1.n is 
translatable to A2.k with respect to IO1.O2., and the sets of axioms 
∆1 of C1 and ∆2 of C2 satisfy the relation ���'����  O1.O2(∆1) 
logically implies ∆2 

Definition 6: A class C1 from ontology O1 is ¡�¢`£`¤ ¥�¦�§:¡�¨�©  to the 
class C2 from ontology O2 with respect to a ª
«
¬�­ ®°¯�±�®�«`ª�²�³ «�´:µ¶ «P·�·(­ ¸�¹  IO1.O2, iff C1 is º�» ¼'½�¾�¿ÁÀ ÂÄÃÅ» ¼'Æ�¾�º|À Æ�» Æ`Ç�À È  to C2 with respect 
to IO1.O2, and C2 is É|Ê Ë�Ì
Í�Î�Ï ÐÒÑÓÊ ËPÔ�Í
É�Ï Ô`Ê Ô�Õ�Ï:Ö  to C1 with respect to 
IO1.O2. 

Definition 7: A class C1 from ontology O1 is × Ø�Ù�Ú�Û�× Ü�Ý�Þ  to the class 
C2 from ontology O2 with respect to ß2à
á�â ã>ä�å�ã�à`ß�æ�ç à�è:éëê�àPì�ì(â í�î  
IO1.O2 iff C1 is ï�ð�ñ�ò ó�ô�õ:ï�ö�÷  to C2 with respect to IO1.O2 and they 
share the same øPù`ú ø�û�ü`ø�üký�þ�ÿ�� ����� ���	� . 

Definition 8: A class C1 from ontology O1 is 
���
���� ����� ��
������ 
�� 
���� �  
to class C2 from ontology O2 with respect to a � ��!�"$#&%('�#)����*�+ ��,$-. �0/�/1" 2�3  function IO1.O2 iff it C1 is not 465 798�:<;�= >�?�5 7�@�:�4�= @�5 @�A�= B  to C2 
with respect to IO1.O2, the class name of C1 is mapped to the class 
name of C2 by IO1.O2, there is at least one of the attributes or one 
of methods of C1, τ1.i, for which there is one attribute or method 
of C2, τ2.j, such that τ1.i is translatable to τ2.j with respect to 
IO1.O2, and for each mandatory attribute A2.k of C2 there must be 
an attribute A1.n of C1 such that A1.n is translatable to A2.k with 
respect to IO1.O2. 

Definition 9: A class C1 from ontology O1 is C0D�DFE6G(H�I JKC�L M)N OQP
L E�C�R�S6N C�L C�T�N$M  (short: U�V�VFW9X(Y�Z translatable) to class C2 from 
ontology O2 with respect to the [�\�](^ _a`(b�_(\�[�c�d \�e$fhgi\�j�j1^ k�l  IO1.O2, 
iff C1 is weakly-translatable to C2 with respect to IO1.O2, but IO1.O2 
may contain weak mappings. α is weakly mapped to β if it 
represents the same individuals but in a different perspective. 

The global properties of the relationships between ontologies 
defined in the FIPA specification [8]  can be shown to hold in the 
current proposal. Those properties are represented by the 
following statements in which C1 and C2 are classes and M is a m�n�o(p qsr)t�q�n�m�u�v n�w	xzyKn0{�{1p |�}

 between the ontologies containing C1 
and C2: 

Strongly-Translatable(C1, C2, M)⇒ 
Weakly-Translatable(C1, C2, M) 

Weakly-Translatable(C1, C2, M)⇒ 
Approx-Translatable(C1, C2, M) 

Equivalent(C1, C2, M)⇔ 
Strongly-Translatable(C1, C2, M) ^  
Strongly-Translatable(C2, C1, M) 

Identical(C1, C2, M)⇒Equivalent(C1, C2, M) 

With the above definitions of possible relations between classes, 
properties and methods, it is also possible to improve the 
definition of the relations between ontologies. These definitions 
were intended to have a meaning similar to the one expressed in 
[8], but they are defined using the more fundamental concepts that 
we have defined (definitions 1 through 9), assuming that all 
ontologies are expressed using the O3F formalism. 

Definition 10: An ontology O1 is an ~0���$~(���(� ��� of ontology O2, 
with respect to the � ����� ���)����������� �����h�K������� �<�  IO1.O2 iff all classes 
in O2 have ������� �(��� �(���  classes in O1, with respect to IO1.O2. 

Definition 11: An ontology O1 is  (¡�¢�£$¤�¥�¦  (§�¨ to ontology O2, with 
respect to the ©�ª�«(¬ ­i®)¯�­(ª�©�°�± ª�²�³µ´aª0¶�¶1¬ ·�¸  IO1.O2 iff all classes in O2 
have ¹)º�»�¼ ½�¾�¿$¹�À�Á  classes in O1 and all classes in O1 have Â(Ã�Ä�Å Æ(Ç�È$Â(É�Ê  classes in O2, with respect to IO1.O2. 

Definition 12: An ontology O1 is Ë Ì�Í�Î�ÏÐË Ñ�Ò�Ó to ontology O2, , with 
respect to the Ô�Õ�Ö(× ØiÙ)Ú�Ø(Õ�Ô�Û�Ü Õ�Ý�ÞµßaÕ0à�à1× á�â  IO1.O2 iff all classes in O2 
have ã ä�å(æ�ç�ã è(é�ê  classes in O1 and all classes in O1 have ë ì�í�î�ï�ë ð�ñ�ò  
classes in O2, with respect to IO1.O2. 

Definition 13: An ontology O1 is ó(ô õ�ö�÷�øúù ûýü�ô õ9þ�÷�ó6ù þ�ô þ�ÿ�ù �  to 
ontology O2, with respect to the 

������� �	��
����
����� ��������������� ���
 IO1.O2 

iff all classes in O1 are ��� �� �!#"%$ &(')� ��*�!��+$ *,� *
-�$ .  to classes in O2, 
with respect to IO1.O2. 



Definition 14: An ontology O1 is /10�2�354 6(7)8 9�2�:�;<4 2,8 2
=�4>0  to ontology 
O2, with respect to the ?5@�A�B CED�F�C<@,?�G�H @�I�JLK�@�M�M1B N#O  IO1.O2 iff some 
classes in O1 are PRQ<S�T5U V(W)X Y�S�Z�[+U\S
X S
]�U\Q  to classes in O2, with 
respect to IO1.O2. 

Definition 15: An ontology O1 is ^`_�_ba�c�d,e f	^�g\h#i jlk)g am^�n�o+i ^,g ^
p�i h  to 
ontology O2, with respect to the q5r�s<t\u�v#w�u�r
q�x�y r�z>{}|~r`����t ���  IO1.O2 
iff some classes in O1 are �`���b�����
� ���
�\�#� �(��� �������<� �,� �
���\�  to classes in 
O2, with respect to IO1.O2 and O1 is not �������#� �(�)� �������<� �
�\�
��� �  to O2. 

Readers acquainted with [8] will notice that our definition of �< ,¡�¢ £�¤
¥ ��¦
§  and ¨ ©�ª<«,¬>¨ ­<®,¯  ontologies do not demand the two 
ontologies to be expressed using the same language. The reason 
for this option is twofold: first, we assume that all ontologies are 
expressed using (or have been converted to) O3F. Second, we 
consider this to be too restrictive a constraint: in our view, it 
suffices that two ontologies (initially expressed using different 
frameworks) map to °�±
²
³ ´<µ
¶>°<·
¸  or ¹ º
»<¼
½¾¹ ¿<À
Á ontologies in O3F. 
Â1ÃÅÄÇÆÉÈÉÊÌËÉÈÎÍÐÏÒÑÔÓÕÑ×ÖØÑÚÙmÛ
This section shows some ontology examples in several well-know 
ontology representation frameworks, namely Ontolingua and 
DAML-OIL. The section also summarizes the limitations of these 
frameworks and presents O3F as an alternative ontology 
representation framework. 

The example in section 2 (partial representation of the Restaurant 
Ontology) is used here. 

 
<daml : Ont ol ogy r df : about =" Rest aur ant Ont ol ogy" > 
( …)  
</ daml : Ont ol ogy> 

<daml : Cl ass r df : I D=" Rest aur ant " / > 

<daml : Dat at ypePr oper t y r df : I D=" maxPr i ce" > 
  <r df s: domai n r df : r esour ce=" #Rest aur ant "  / > 
  <r df s: r ange r df : r esour ce=" #f l oat " / > 
</ daml : Dat at ypePr oper t y> ÜÞÝ>ß�àlá�â�ã	äæåbç�á<èêé�ë%è)ì(â1í�îðïÉñRò)óðômñöõ	â�÷lá�â�ø`â�ù,è)ç5è�Ý\é�ùÇé�ëúè�ì(â

õðâ�øûè�ç�àlá�ç�ù,è%óæù,è)é�ü>é�ß5ý
Figure 3 presents part of the Restaurant Ontology represented in 
DAML-OIL. The þ ÿ ��� �����	��
��  class of the ��
���������������������� �� ��"!$#  
ontology includes a property named %'&$(�)+*�, -$. . Figure 4 presents 
the same example in Ontolingua. 

( def r el at i on Rest aur ant  
 ( Subcl ass- Of  Rest aur ant  I ndi v i dual - Thi ng)  
 ( Cl ass Rest aur ant )  

 ( Ar i t y Rest aur ant  1) )   

( def r el at i on Maxpr i ce 

 ( …)  
 ( Range Maxpr i ce Real - Number )  
 ( Domai n Maxpr i ce Rest aur ant )  

 ( …) )  /+0�1�243�5�687:9+;�3�<>=�?:<A@B5DCFE�<A=�G�0�EB1�2B;IH85�J43�5�K�5$E�<L;�<A0�=�EM=�?:<A@B5
HN5$KO<L;�243�;�E�<:CME�<A=�G�=�1�P

The representation of the method Q�R�R�S�T�U�V�W X  in these ontology 
representation frameworks is impossible, since Ontolingua can 
only represent functions, general predicates and axioms, while  
DAML+OIL is only able to represent classes and properties.  

To deal with this shortage, we have defined an extension to 
DAML+OIL which allows the definition of methods and their 

association with classes. This extension can be found in [15]. 
Using this extension, this method would be defined as: 
<daml : Cl ass r df : about =" #Rest aur ant " > 
 <met : hasMet hod> 
  <met : Met hod r df : I D=" BookTabl e" > 
   <met : i nput Ar gument s> 
    <met : Ar gument Li st > 
     <r df : l i > 
      <met : Met hodAr gument > 
       <met : ar gument Name>t abl e  
       </ met : ar gument Name> 
       <met : ar gument Type r esour ce=" #t ext " / > 
      </ met : Met hodAr gument > 
     </ r df : l i > 
     <r df : l i > 
      <met : Met hodAr gument > 
       <met : ar gument Name>booker   
       </ met : ar gument Name> 
       <met : ar gument Type r esour ce=" #t ext " / > 
      </ met : Met hodAr gument > 
     </ r df : l i > 
     </ met : Ar gument Li st > 
    </ met : i nput Ar gument s> 
   </ met : Met hod> 
 </ met : hasMet hod> 
</ daml : Cl ass> Y+Z�[�\4]�^D_8`ba'c'dfe�`Ag8h�eji8^�k4]�^�l�^�m�nAo�nLZ�p�mqp�rbnLsB^�dt^�nAsBp�nAu

vDp�p�w�xyo�zB{�^
 
( i nst ance ( Met hod : name BookTabl e)  Met hod)  

( i nst ance ( Associ at i on : name Met hodOf Cl ass 
 : ar gument s ( set   
  ( AAr g : c l ass Met hod : key name 
   : obj ect  BookTabl e)  
  ( AAr g : c l ass Cl ass : key name 
   : obj ect  Rest aur ant ) )  
 : at t r i but es ( set  ) )  Associ at i on)  

( i nst ance ( Associ at i on : name Ret ur nType 
 : ar gument s ( set   
  ( AAr g : c l ass Met hod : key name 
   : obj ect  BookTabl e)  
  ( AAr g : c l ass Dat aType : key name 
   : obj ect  St r i ng)  
 : at t r i but es ( set  ) )  Associ at i on)  

( i nst ance ( Ar gument  : name t abl e)  Ar gument )  

( i nst ance ( Associ at i on : name TypeOf Ar gument  
 : ar gument s ( set   
  ( AAr g : c l ass Ar gument  : key name 
   : obj ect  t abl e)  
  ( AAr g : c l ass Dat aType : key name 
   : obj ect  st r i ng) ) )  Associ at i on)  

( i nst ance ( Associ at i on : name Ar gOf Met hod 
 : ar gument s ( set  
  ( AAr g : c l ass Ar gument  : key name 
   : obj ect  t abl e)  
  ( AAr g : c l ass Met hod : key name 
   : obj ect  BookTabl e) ) )  Associ at i on)  |~}����4���y���>�8�����N�$�4�����������L���������M���b�A�B�y�t�����B���F�I�������y���B���
The description of argument �������" �¡  is omitted in Figure 6 but it 
would be defined similarly to argument ¢ £�¤�¥ ¦ . 
§�¨ª©f«f¬­©�®°¯­±�²>«³¬­±µ´f¬f¶¸·q¯­¹º¯f»­¼¾½¿«³»fÀ
The paper describes an object-oriented ontology representation 
framework allowing the representation of the most common OO 
concepts, including classes, properties, methods and their 
relationships. The main contribution of the paper is the declarative 
description of action methods, that is, methods whose execution 



changes the state of the world. The paper shows that the presented 
proposal improves the autonomy of agents in agent networks 
because it provides a stronger semantic content than related 
ontology representation frameworks (e.g., DAML, Ontolingua, 
and UML). We have also shown that the proposed approach can 
be used for representing ontologies originally written in 
DAML+OIL, Ontolingua and UML. 

Future steps along this work are the development of software tools 
that allow the automatic mapping of different surface 
representation methods into the proposed framework, and using 
the action method description for automatically generate agent 
programs in the Pagoda of Creation [12][11]. 
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