
O3F: an Object Oriented Ontology Framework

Luís Mota Luís Botelho Hugo Mendes António Lopes

Communicating Intelligent Systems Group of ADETTI
Av. das Forças Armadas, Edifício ISCTE,

1600-082 Lisboa, Portugal

{luis.mota, luis.botelho, hugo.mendes, antonio.luis}@iscte.pt
Student Paper: 380 �����������
	��

This paper describes an object-oriented framework for ontology
representation, which was derived from the analysis of a set of use
cases for ontology services provided by ontology agents in open
agent networks. The described use cases are converted into a set
of requirements for the Information System supporting the
ontology service.

Each ontology on the server has classes, properties and methods.
Classes have attributes, which are properties, methods and
axioms. Attributes have facets. Methods have arguments, return
value and method definition through axioms. Classes and
properties may be arranged in hierarchies. The proposed
framework accommodates the expression of arbitrary axioms
about the entities in the ontology. We propose a situation calculus
approach for describing the action methods of the ontology.
Action methods are described by state change and state constraint
axioms. The frame problem is handled assuming that nothing
changes unless explicitly stated.

We present the definition of several relations between entities of
different ontologies which allow inferring global relations
between those ontologies. Finally, we propose Extended-SL as the
Representation Language of O3F.

�
���������������������! !���"�

Ontologies in agent-based information systems and knowledge
management; Logics & formal models of agency and multiagent
systems; Standards for agents and multiagent systems

#%$'&�(*),+�-�.

Ontology, ontology representation framework, action methods,
arbitrary axioms, situation calculus, FIPA SL

/�021�3
4�5
687�9
:�4�1�683
Ontologies are very useful in a wide range of situations [14][10].
In the less complex extreme of the range, ontologies may be used
by agent designers to build their agents for specific domains.

Using a widely accepted and disseminated ontology, agent
designers can implement agents that may understand a large set of
message contents in their application domain. In the more
complex extreme of the range, ontologies would be dynamically
and incrementally developed, acquired and used by the agents –
one of the main uses would be text mining. In this paper we focus
our attention in an intermediate complexity problem. We focus on
the problem of creating domain independent agents that use the
ontologies as a means of finding other agents that provide desired
services and information; and as a means for tailoring domain
independent information processing mechanisms to specific
domains.

In Agentcities [16], most likely the largest agent network ever
implemented, there are several value-added types of agents, which
must dynamically discover and integrate information and services
for their clients [2]. For instance, a Personal Assistant Agent
(PAA) may want to find an agent that can book a table in a
restaurant. In this scenario the PAA must look for ontologies
describing services whose execution results in a table being
booked. Possibly, there are different such services. A restaurant
representative agent may have the service BookTable that results
in a table being booked. The Evening Organizer [4] is another
agent providing a more complex service that might also result in a
table being booked. Therefore, the procedural description of the
service would not help the PAA find the service provider. The
best way to find it is by searching for ontologies describing the
world states that result of the execution of services. Since
services, in object-oriented frameworks, are provided by action
methods, it is necessary that ontologies provide declarative
method description.

This paper makes some contributions to the state of the art in
ontologies. First, it presents an explicitly assumed object oriented
framework for ontology representation, while similar approaches
use a more frame-oriented dressing. We show that our framework
supports the representation of DAML+OIL[6] ontologies and
Ontolingua[7] ontologies. One of the most relevant contributions
is the proposal to include method definitions in the ontology,
especially action methods (methods whose execution changes the
state of the world). Other frameworks, especially Ontolingua,
allow the definition of functions and relations but not actions. The
other major contribution is the formal definition of relations
among entities in different ontologies from which it is possible to
infer global relations between ontologies. Another contribution is
the use of FIPA SL [9] as the surface representation language of
the framework.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. ;<;>=?;>@BA C"D

, July 14-18, 2003, Melbourne, Australia.
Copyright 2003 ACM 1-58113-000-0/00/0000…$5.00.

The remaining sections of the paper are organized as follows.
Section 2 presents a set of use cases for an ontology service
provided by an ontology agent in an open agent network. In
Section 3, the presented use cases are converted into a set of
requirements for the ontology information system. The
information system is described through a UML class diagram.
FIPA SL is proposed as a surface language to represent the
ontology. Section 4 argues that the information system describe in
section 3 is not enough from the semantic point of view. It adds
provision for hierarchic information representation; it includes
arbitrary axioms in the proposal, especially axioms for the
declarative description of action methods. Section 5 shows that
the presented framework supports inference about relations
between ontologies. Section 6 discusses the potential of the
presented approach, its advantages and disadvantages, comparing
it with related work. Finally, section 7 presents conclusions.

EGF2H
I�J
KMLON
I�J
I
Practical cases in the Agentcities Project revealed several
shortages of commonly used ontology representation frameworks
and the need to create an improved framework. This section
describes a set of use-cases originated in the Project.

But how will an agent, in fact, query for ontologies and agents
that provide/use those ontologies? This section shows some use-
cases of a broker agent as an example.

Imagine an Agent that works as a broker of all kinds of Restaurant
Services. We will call this agent P,QSRUT�V . In order to provide/use
information about restaurants Fredo will look for agents that work
with any Restaurant Ontologies. First, Fredo will look for the
domain ontologies by asking the Ontology Agent (OA) the
following question: “What are the ontologies that define/use class
‘Restaurant’?” . In a generic and more complete way, the question
is: “What are the ontologies that define class C with a set of
attributes including attributes { A1, A2,…, An} ?” .

With this information, Fredo will be able to look for agents
providing services based on the ontologies returned by the OA.

Now, imagine that Fredo wants to know what kind of information
is delivered in those ontologies (related to information services)
or special information of the class like its key attributes. It would
have to ask OA something like: “What are the attributes of the
class Restaurant?” or “What are the sets of attributes that
univocally identify the instances of class Restaurant defined in
ontology Restaurant-Information-Service-Ontology?”.

The same applies if Fredo wishes to know something about a
class’s methods. For instance, Fredo is looking for ontologies that
allow providing Restaurant Booking Service. This way it would
have to ask the OA the following: “What are the ontologies that
define class Restaurant with method W�X'X'Y[Z'\^]'_ ` , which takes an
String (Table Name) and a String (Booker Name)?”.

More generally, what are the ontologies that define class C with a
set of methods including the methods { (M i, <(Pi.1, Ci.1), (Pi.2, Ci.2),
…., (Pi.m, Ci.m)>, Ci)} , and a set of attributes including attributes
{ (Aj, Cj)} , in which Pi.l is the name of argument l of method M i
and Ci.l is the class of the argument l of method M i, A j is the name

of attribute j and Cj is the class of attribute j, and Ci is the class of
the value returned by the method M i?

a�b2cedgfhdgcei�ckj
l
m�i�dgj
l�cnl�f
o
p
In order to be able of handling the interactions described in
section 2, the OA must have the following information: the set of
properties of the ontology, the set of methods of the ontology, and
the set of classes of the ontology. Each property is described by
property name, property type (i.e., class or a primitive data type)
and unique identifier. Each method is described by method name,
a set of parameters, i.e., parameter name and parameter type, by
the type of the method return value if there is one or void if none
exists, and by a unique identifier. Each class is described by the
class name, a set of attributes and a set of methods. Each class
must also specify the set of attributes that univocally identify the
instances of the class that is the set of key attribute.qsrutgvxwUy�z

 shows the UML class diagram of the information system
necessary to represent ontologies, following the presented
analysis. The presented class diagram states that properties can be
of two types: a known-type like String, Integer or Float
(DataType); or a Class. Also visible in the class diagram is the {^|}| ~U� �g�'|}� definition. When associated to a class, a property
becomes an attribute of that class. It is also possible to declare
alternative sets of key attributes of a class. Attributes have facets
that enumerate a set of characteristics like cardinality, numeric
maximum and others. The Information System described in Figure
1 can capture hierarchic relations among classes and among
properties. However, arbitrary axioms, functional and relational
definitions, and state change axioms cannot easily be captured in a
traditional information system – some knowledge representation
language is also needed.

Ontolingua is the best-known ontology representation framework
allowing the representation of arbitrary axioms. Here we present
an alternative approach using FIPA SL language.

The information system represented by the class diagram can be
manipulated through the general-purpose predicate and function � �'��� �g�g�������

 and �����}�[����� respectively (see [1]).

Ontologies may be added to the Information System using the
predicate � �'���}�'�g����� � .
The following example means that the ontology named
RestaurantOntology created by the Agentcities Consortium is an
instance of the class Ontology.

(i nst ance (Ont ol ogy : name Rest aur ant Ont ol ogy
: aut hor Agent c i t i es) Ont ol ogy)

Particular classes may also be inserted in the class ‘Class’ using
the ¡ ¢'£U¤ ¥g¢g¦�§�¨ © . For example, (i nst ance (Cl ass : name
Rest aur ant) Cl ass) means that the class named
‘Restaurant’ is an instance of class ‘Class’ .

Using the predicate ª «[¬U­ ®'«g¯�°�±�² , it is also possible to create
properties. (i nst ance (Pr oper t y : name maxPr i ce)
Pr oper t y) means that ‘maxPrice’ is an instance of class
‘Property’ .

 ³µ´}¶g·x¸U¹»º½¼�¾G¿^À Á[ÂÃÁ[¶½ÄÆÅ»Â}Ç[ÈÉÈ�Ê�´}Ç[¶g¸"Ç[Ë

The associations between the classes are represented using the
special-purpose class Ì�Í�ÍUÎ'Ï½Ð Ñ�ÒÃÐ Î'Ó which specifies the relation
between two or more classes. For example, (i nst ance
(Associ at i on : name Cl assOf Ont ol ogy
: ar gument s (set (AAr g : name Cl ass : key name
: obj ect Rest aur ant) (AAr g : cl ass Ont ol ogy
: key name : obj ect Rest aur ant Ont ol ogy)
: at t r i but es (set)) Associ at i on) means that
Restaurant (of class Class) is associated with RestaurantOntology
(of class Ontology).

The option of representing associations by the special-purpose
class Ô�ÕÉÕ�Ög×MØ Ù^ÚÃØ Ö[Û , which specifies the classes of the associated
entities, allows to reason about the way classes are associated with
each other. Using the proposed approach, agents can dynamically
add new entities and relationships between them to the ontology,
and they can also query the ontology service about existing
entities and the relationships between them.

Through the message in Figure 2, Fredo asks the Ontology Agent,
which provides an ontology service, to tell it the classes of
ontology RestaurantOntology.

The expression (val ue ?c name) represents the value of
attribute ‘name’ of the object ?c, which in this case is an instance
of class Class. The name of a class is its unique identifier. The
detailed reading of the message in Figure 2 is “Send me the
instances of class Class that are associated to the Ontology
RestaurantOntology, through the association ClassOfOntology” .

(quer y- r ef : sender Fr edo : r ecei ver (set SomeOA)
 : cont ent “ (
 (al l ?c (exi st s ?ar gs (and
 (i nst ance ?c Cl ass)
 (i nst ance
 (Associ at i on
 : name Cl assOf Ont ol ogy
 : ar gument s ?ar gs)
 : at t r i but es (set)
 Associ at i on)
 (member
 (AAr g
 : c l ass Ont ol ogy : key name
 : obj ect Rest aur ant Ont ol ogy)
 ?ar gs)
 (member
 (AAr gs
 : c l ass Cl ass : key name
 : obj ect (val ue ?c name))
 ?ar gs))))
) ”
 : l anguage Ext ended- SL
) ÜµÝ}ÞgßxàUá�â�ãåäæß<á�à�ç^Ý}è<Þ�éëê<á�ì'è^éëì[í}ì[Þ½çÆîSáMàÉï�Ý}ð�á
The presented framework, O3F, allows the representation of
ontologies originally described in other frameworks, such as
Ontolingua and DAML-OIL. Furthermore, the use of Extended-
SL as the ontology representation language facilitates ontology
sharing between agents.

ñ�ò2ó�ô�õ
ö�÷�ô�ó�ô�øùó�ú�ö�û8üþý
The information system that supports the minimum requirements
identified for the Ontology Service provides only a very shallow
semantics (see section 3).

Some useful relations between the entities of the ontology cannot
be represented by the above system. Some provision must be
made in order to represent arbitrary axioms in the ontology. For
instance, we might be interested in expressing some constraint
between two attributes of a given class through a set of axioms,
such as A1 must take a value between the value of A2 and its
double.

Finally, in many circumstances, it is necessary to clearly define
the methods of the ontology. Sometimes, the name, the return type
and the arguments of the method are not enough – agents must
reason about what the method is. Functional and relational
methods may be defined declaratively through a set of axioms.
Methods that change the state of the world can also be
declaratively defined using situation calculus, through the
specification of the relation between the input state and the output
state.

In the next subsection we show that FIPA SL can be used to
define relational and functional methods through sets of axioms.
Sub section 4.2 presents one of the main contributions of the
paper: a proposal to represent action methods through axioms
about the way the method changes the state of the world when it is
executed.
ÿ��������	��

��������
���
���������������������
��! "�#�%$�����&
Relational and functional methods may be defined by sets of
statements in the language of first order logic. For instance, if it is
necessary to define a method PriceDiff of the class Restaurant that
computes the difference between the maximum and minimum
prices, we may use the following axiom

∀r Instance(r, Restaurant) ∧ IsNumber(r.maxPrice) ∧
IsNumber(r.minPrice) ⇒ r.PriceDiff() = r.maxPrice – r.minPrice

This axiom can easily be represented in Extended SL[1] as
follows:

(forall ?r (implies (and (instance ?r Restaurant) (isNumber (value
?r maxPrice)) (isNumber (value ?r minPrice))) (= (value ?r
PriceDiff (sequence)) (- (value ?r maxPrice) (value ?r
minPrice)))))

Relational methods and arbitrary constraints may also be defined
in SL.

Using this possibility, agents can dynamically add constraints,
relational and functional definitions to the ontologies. If those
definitions are kept in the ontology service information system,
then they may also be consulted to be further reasoned upon.
'�()+*�,	-�.
,
/0,	1�2�3�1�465�7#2%3�8�1�9",�2�:�8�;�/
Action Methods are methods whose execution changes relevant
aspects of the current state of the world. Therefore, if we want to
declaratively represent action methods in the ontology, we need
some provision to talk about world states. The good thing about
states is that they allow us to represent changes in the world. In
this paper we propose to describe action methods in ontologies
using <>=@?@A#B�?C= D�EGFHB�I FHA0IJAK< , which was introduced by McCarthy and

Hayes in 1969 [13] for describing how actions and other events
affect the world.

In this proposal, state-dependent properties are described by
functions that map objects into sets of world states in which the
objects have that property. For instance, Booked(Table1, A)
represents the set of world states in which the Table1 (of a certain
restaurant) has been booked by A. Functions that describe states
of the world such as Booked/2 are called fluents.

The predicate Holds/2, which takes a fluent and a state, is used to
say that the condition described by the fluent holds in that world
state. For instance, Holds(Booked(Table1, A), S0) means that, in
state S0, Table1 is booked by A. Actually, Holds(p, s) ≡ s∈p but
we use Holds instead of ∈ because it improves readability.

In order to emphasize the fact that fluents represent conditions of
the world, it is common practice to use logical notation to
represent set operators that will be applied to fluents. ¬ denotes
compliment, ∧ and ∨ denote intersection and union, and (A ⇒ B)
means that B is a subset of A.

In this approach, action methods are represented by functions, and
concrete method invocations are represented by action
designators. For instance, the action method BookTable may be
invoked with a certain sequence of arguments: the table and the
person on behalf of whom the table is booked: BookTable(Table1,
A).

Finally, the function L0M maps pairs of method invocation and
world state into world states. It represents the state that results of
the invocation of a given method with a given sequence of
arguments in a given world state.

Methods are described by a set of state change axioms that
represent the way their invocation changes the world, as in the
following example:

∀t, x, s Holds(Free(t), s) ⇒ Holds(Booked(t, x), Do(BookTable(t,
x), s))

If a table is free in a certain state, then it will become booked by x
in the state resulting of x booking that table.

To properly define what happens in the world when an action
method is executed, we also need to state several axioms that
represent general constraints that hold in any world state. These
are called state constraints.

∀t, x, s Holds(Booked(t, x), s) ⇒ ¬∃y (Holds(Booked(t, y), s) ∧ y
≠ x)

If a table is booked by someone, it can’ t be booked by someone
else in the same world state.

Using the state change axioms that describe the way the world
changes by invoking methods, we may know what becomes true
when the method is invoked. Using state constraints we may
conclude what becomes false when methods are invoked. In the
case of table booking, we know that after a table has been booked,
it becomes booked by someone, and we also know that it is not
booked by anybody else.

State change axioms and state constraint axioms describe what
becomes true and what becomes false when methods are invoked,
but they don’ t describe what remains the same after methods are
invoked. This is the so-called NPO�Q0RTSVUWOYX0Z�[S\R .

The frame problem may be solved by writing sets of frame axioms
that explicitly state what does not change when methods are
invoked. However this is not practical in realistic situations
because for each method, there are so many things that stay the
same that we would need a tremendous quantity of frame axioms.
The alternative that we chose is a more practical way of handling
the frame problem, which assumes that, if nothing is stated
otherwise, things do not change.

The above axioms can also be written using FIPA SL syntax.

(forall ?t (forall ?x (forall ?s
 (implies (Holds (Free ?t) ?s)
 (Holds (Booked ?t ?x) (Do (action ?x (BookTable ?t ?x)) ?s))))))

(forall ?t (forall ?x (forall ?s
 (implies (Holds (Booked ?t ?x) ?s)
 (not (exists ?y (and (Holds (Booked ?t ?y) ?s) (<> ?x ?y))))))))

Using the proposed approach, action methods can be declaratively
described in terms of what changes in the world and what stays
the same when they are invoked. Contrarily to what happens with
DAML-S Service Descriptions [5], the presented approach allows
agents to access to and to reason about ontology described
methods, not in terms of their internal control structure but in
terms of the changes they can bring about. This is a clear
advantage since there are several ways a method can be internally
engineered in order to effect the same changes.

This approach is also amenable of being expressed in FIPA SL,
which is an enormous advantage given that SL is being used both
in FIPA Platform Management Specifications and in the
Agentcities project, but also because of the computational support
already available for processing SL.

]�^`_�acbed�fcg!hji�k�lma6fcnoaeapiqhji�fehjbmh`rsg!aek
The FIPA Ontology Service Specification [8] presents a
framework, explicitly based on OKBC[3], which specifies the
behavior of a FIPA compliant Ontology Agent. This specification
includes two different ontologies: the Meta Ontology, which deals
with the objects specific to an ontology (classes, slots, etc), and
the Ontology Service Ontology (OSO), which deals with the
operations on ontologies and the relations between ontologies.

The OSO defines six possible classifications for the relationship
between two ontologies: t�u0vJt>w#x\y z�w , { |�}>~%�C{ �>�%� , �\���0� �\���@�\��� , �Y� ���#�K��� ���
� �������Y� �%� ���0� � , ���>�0�P� ¢¡¤£ ¥��0¦#§\� ��£ �%¨#�@� ©�ª0«�©�¬�¬®­�¯\°0±¤² ­�©0ª#³\´ ©�² ©%µ�´@¶ . This
classification presents a significant shortage: it applies to the
whole ontology, ignoring the relation between individual classes.
This implies that if we have two ontologies that share the same n
classes but that have each one additional class that is not shared,
they will simply be considered ·¹¸\º�»K¼ ½V¾À¿ Á�º�Â�ÃY¼ º%¿ º�Ä0¼ ¸ .
To overcome this lack of expressiveness, we present an approach
that defines relationships between the entities of two ontologies
(e.g., classes and attributes). Then, the more global relations
between ontologies are inferred from the more specific relations
between the lower level entities. This approach allows inferring
not only global relations between ontologies but also relations
about the entities in the ontology.

Ontologies define complex entities from structural and functional
relationships between simpler entities. In the end, every complex
concept is represented in terms of a pre-defined and limited initial
vocabulary. In the object-oriented ontology representation
framework described in sections 3 and 4, the fundamental

building blocks of the ontology, that is, the elements in its
vocabulary, are basic data types (class DataType in ÅWÆ@Ç�È¢É\ÊÌË),
facet names, property names, method names and class names.
Hereafter, the set of non-decomposable elements of the ontology
is termed its ÍÏÎ#Ð\Ñ ÒsÓ\Ô0Ò>Î�Í0Õ�Ö Î0×JØ . The set of all concepts of the
ontology, either atomic or compound, will be called its Ù�Ú%Û Ù>Ü�Ý�Ù>ÝÞHß�à>á%â�ã0ä á�åJæ . Therefore the ç�è%é ç>ê�ë�ç>ëíì\î�ï\ð�ñ0ò�ó ð�ôCõ of a given
ontology includes its öÏ÷�ø\ù ú�û\ü�ú\÷�ö0ý�þ ÷�ÿ�� .

The degree to which one ontology is translatable to another
ontology depends on the mapping between elements in the ������� 	
�� 	��
����� ����� of the first ontology into (atomic or complex)
elements of the ����� ����������������
!�"�#$ �%�& of the other ontology.
Ontology A is completely translatable to ontology B only if there
is a total mapping from the elements in the '�(�)�*$+-,/.�+�(
'�0�1 (�2�3 of A
to elements of the 4�5�6 4�7�8�4�8:9�;�<�=
>�?�@ =�ACB of B. Certainly, this is not
a sufficient condition, but it is necessary.

In certain circumstances, it would be possible to infer mappings
from the D�E�F�G HJI�K�H�E�D�L�M E�N�O of one ontology into another ontology
from global relationships between the ontologies. For instance, if
two ontologies have exactly the same structural and functional
relationships and they are known to be completely translatable
then it will be possible to infer total mappings between their basic
vocabularies that satisfy the global relationships between them.
However, even in cases like this, there may be more than one such
mapping.

In the remaining of this section, without lack of generality, we
will adopt a bottom-up point of view, where the mapping from the
basic vocabulary of one ontology to the other ontology is known PQSRUT V�RUT .
Being L(A) the basic vocabulary of ontology A, and V(A) the WYX�Z W�[�\�W�\^]�_�`�a�b�c�d a�eCf of ontology A, we define Ia.b:L(A)→V(B) as
the g�h�i�j kml�n�k�h�g�o�p h�q�rtsuhYv�vwj xzy from A to B Ia.b is a partial function
that maps elements of the {�|�}�~ ��������|
{���� |���� of ontology A into
elements of the �����$����������������������� ����� of ontology B.

Having the basic vocabulary mapping Ia.b, it is possible to define
relationships between compound concepts of two ontologies with
respect to that mapping.

Generally speaking, the relations that will be defined in the
remaining of the section are such the relation between two
composite concepts is reduced to relations between their parts.
���������U� �
�C� ���t�¡ £¢S���Y¤S¥������ ¥��

Definition 1: Property P1 in ontology O1 is translatable to
property P2 in ontology O2, with respect to the ¦�§�¨�© ª¬«�­�ª�§�¦�®�¯ §�°$±² §Y³�³´© µ/¶ IO1.O2 iff the name of P1 is mapped to the name of P2 by
IO1.O2, and the type of P1 is translatable to the type of P2, by
IO1.O2. ·�¸�¹�º�»U¼ ¹
½C¾ ¿�ºt¿¡À£ÁS¹�Â�Ãz½ »

Definition 2: Facet F1 of ontology O1 is translatable to facet F2 of
ontology O2, with respect to the Ä�Å�Æ�Ç ÈuÉ�Ê�È�Å�Ä�Ë�Ì Å�ÍCÎ^ÏmÅÑÐ�ÐwÇ ÒzÓ IO1.O2
iff the name of the facet F1 is mapped to the name of facet F2 by
IO1.O2, and the value of F1 is the same as the value of F2.

This definition assumes that the values of facets are not subject to
translations, which is somehow restrictive. An alternative
approach would be to add the possible values of facets to the Ô�Õ�Ö�× ØuÙ�Ú�Ø�Õ�Ô�Û�Ü Õ�ÝCÞ

 of the ontology. This way, the translation would
be handled by the basic vocabulary mapping function IO1.O2.

ß�àÑá�â�ã�ä á
å�æ ç�â�çéèmá�å�å à�æ$ê�ë�å ìUã

Definition 3: Attribute A1 of class C1 of ontology O1 is
translatable to attribute A2 of class C2 of ontology O2 with
respect to the í�î�ï�ð ñ�ò�ó�ñ�î
í�ô�õ î�ö�÷ùøuîYú�úwð û/ü IO1.O2, iff the property
associated to C1 by A1 is translatable to the property associated to
C2 by A2 with respect to IO1.O2, and for each facet F1.i of A1,
there is a facet F2.j of A2 such that F1.i is translatable to F2.j with
respect to IO1.O2. ý�þÑÿ������ ÿ���� 	
��	
������� ��	
���

Definition 4: Method M1 in ontology O1 is translatable to method
M2 in ontology O2, with respect to the �
�
��� ������������ �! ��"�#%$��'&�&(�)�*
IO1.O2 iff the name of M1 is mapped into the name of M2 through
IO1.O2, the return type of M1 is translatable to the return type of
M2, and if for each argument A1.i of M1 there is an argument
A2.j of M2 such that A2.i is translatable to A2.j with respect to
IO1.O2, and if the axiomatizations of M1 and M2, respectively ∆1
and ∆2 satisfy the relation +�,'-�.�/ O1.O2(∆1) logically implies ∆2, in
which TransO1.O2(α) is the translation of α of ontology O1 into the
correspondent concept in ontology O2 with respect to the 021
3�4 56�7 5�1�0�8�9:1�;�<>=�1'?�?@4 A�B IO1.O2.

The main problem with this approach is to show that C�D'E�F�G
O1.O2(∆1) logically implies ∆2. In general, logical

implication is a hard problem. For the first order logic, it is semi
decidable. That is, it is possible to create an algorithm that shows
that H�I'J�K�L O1.O2(∆1) logically implies ∆2, if that is actually the
case. However, it is not possible to create an algorithm that is
guaranteed to stop when M�NPO�Q
R O1.O2(∆1) does not imply ∆2.

This solution although complex, is very elegant and powerful in
the sense that it provides automatic means that allow determining
the degree to which a method is translatable into another one.

The problem of showing if S�T'U�V
W O1.O2(∆1) logically implies ∆2,
although hard and semi decidable, can be approximately handled
by robust theorem proving techniques as resolution with some
restrictive hypothesis such as the Closed World Assumption.

Another alternative would be to add the set of methods in the
ontology to its X2Y�Z�[\^]�_�\�Y`X�a�b Y�c�d . This way, the e2f�g�h ikj�l�i�f`e�m�n f�o:pq fPr�r(h s�t , IO1.O2, would provide uwvyx�z {�x|z mappings for all the
defined methods.
}�~'������� ����� �
��~|��� �`��� ���
�(����� �������k��� ���P�����

Definition 5: A class C1 from ontology O1 is �|� ���
����� ���
� �'�����|� ��� �`��� � to class C2 from ontology O2 with respect to IO1.O2
iff the name of C1 is mapped to the name of C2 by IO1.O2, for each
attribute A1.i of C1 there is an attribute A2.j of C2 such that A1.i
is translatable to A2.j with respect to IO1.O2, for each method M1.i
of C1 there is a method M2.j of C2 such that M1.i is translatable
to M2.j with respect to IO1.O2, for each mandatory attribute A2.k of
C2 there must be an attribute A1.n of C1 such that A1.n is
translatable to A2.k with respect to IO1.O2., and the sets of axioms
∆1 of C1 and ∆2 of C2 satisfy the relation ���'���� O1.O2(∆1)
logically implies ∆2

Definition 6: A class C1 from ontology O1 is ¡�¢`£`¤ ¥�¦�§:¡�¨�© to the
class C2 from ontology O2 with respect to a ª
«
¬�­ ®°¯�±�®�«`ª�²�³ «�´:µ¶ «P·�·(­ ¸�¹ IO1.O2, iff C1 is º�» ¼'½�¾�¿ÁÀ ÂÄÃÅ» ¼'Æ�¾�º|À Æ�» Æ`Ç�À È to C2 with respect
to IO1.O2, and C2 is É|Ê Ë�Ì
Í�Î�Ï ÐÒÑÓÊ ËPÔ�Í
É�Ï Ô`Ê Ô�Õ�Ï:Ö to C1 with respect to
IO1.O2.

Definition 7: A class C1 from ontology O1 is × Ø�Ù�Ú�Û�× Ü�Ý�Þ to the class
C2 from ontology O2 with respect to ß2à
á�â ã>ä�å�ã�à`ß�æ�ç à�è:éëê�àPì�ì(â í�î
IO1.O2 iff C1 is ï�ð�ñ�ò ó�ô�õ:ï�ö�÷ to C2 with respect to IO1.O2 and they
share the same øPù`ú ø�û�ü`ø�üký�þ�ÿ�� ����� ���	� .

Definition 8: A class C1 from ontology O1 is
���
���� ����� ��
������
��
���� �
to class C2 from ontology O2 with respect to a � ��!�"$#&%('�#)����*�+ ��,$-. �0/�/1" 2�3 function IO1.O2 iff it C1 is not 465 798�:<;�= >�?�5 7�@�:�4�= @�5 @�A�= B to C2
with respect to IO1.O2, the class name of C1 is mapped to the class
name of C2 by IO1.O2, there is at least one of the attributes or one
of methods of C1, τ1.i, for which there is one attribute or method
of C2, τ2.j, such that τ1.i is translatable to τ2.j with respect to
IO1.O2, and for each mandatory attribute A2.k of C2 there must be
an attribute A1.n of C1 such that A1.n is translatable to A2.k with
respect to IO1.O2.

Definition 9: A class C1 from ontology O1 is C0D�DFE6G(H�I JKC�L M)N OQP
L E�C�R�S6N C�L C�T�N$M (short: U�V�VFW9X(Y�Z translatable) to class C2 from
ontology O2 with respect to the [�\�](^ _a`(b�_(\�[�c�d \�e$fhgi\�j�j1^ k�l IO1.O2,
iff C1 is weakly-translatable to C2 with respect to IO1.O2, but IO1.O2
may contain weak mappings. α is weakly mapped to β if it
represents the same individuals but in a different perspective.

The global properties of the relationships between ontologies
defined in the FIPA specification [8] can be shown to hold in the
current proposal. Those properties are represented by the
following statements in which C1 and C2 are classes and M is a m�n�o(p qsr)t�q�n�m�u�v n�w	xzyKn0{�{1p |�}

 between the ontologies containing C1
and C2:

Strongly-Translatable(C1, C2, M)⇒
Weakly-Translatable(C1, C2, M)

Weakly-Translatable(C1, C2, M)⇒
Approx-Translatable(C1, C2, M)

Equivalent(C1, C2, M)⇔
Strongly-Translatable(C1, C2, M) ^
Strongly-Translatable(C2, C1, M)

Identical(C1, C2, M)⇒Equivalent(C1, C2, M)

With the above definitions of possible relations between classes,
properties and methods, it is also possible to improve the
definition of the relations between ontologies. These definitions
were intended to have a meaning similar to the one expressed in
[8], but they are defined using the more fundamental concepts that
we have defined (definitions 1 through 9), assuming that all
ontologies are expressed using the O3F formalism.

Definition 10: An ontology O1 is an ~0���$~(���(� ��� of ontology O2,
with respect to the � ����� ���)����������� �����h�K������� �<� IO1.O2 iff all classes
in O2 have ������� �(��� �(��� classes in O1, with respect to IO1.O2.

Definition 11: An ontology O1 is (¡�¢�£$¤�¥�¦ (§�¨ to ontology O2, with
respect to the ©�ª�«(¬ ­i®)¯�­(ª�©�°�± ª�²�³µ´aª0¶�¶1¬ ·�¸ IO1.O2 iff all classes in O2
have ¹)º�»�¼ ½�¾�¿$¹�À�Á classes in O1 and all classes in O1 have Â(Ã�Ä�Å Æ(Ç�È$Â(É�Ê classes in O2, with respect to IO1.O2.

Definition 12: An ontology O1 is Ë Ì�Í�Î�ÏÐË Ñ�Ò�Ó to ontology O2, , with
respect to the Ô�Õ�Ö(× ØiÙ)Ú�Ø(Õ�Ô�Û�Ü Õ�Ý�ÞµßaÕ0à�à1× á�â IO1.O2 iff all classes in O2
have ã ä�å(æ�ç�ã è(é�ê classes in O1 and all classes in O1 have ë ì�í�î�ï�ë ð�ñ�ò
classes in O2, with respect to IO1.O2.

Definition 13: An ontology O1 is ó(ô õ�ö�÷�øúù ûýü�ô õ9þ�÷�ó6ù þ�ô þ�ÿ�ù � to
ontology O2, with respect to the

������� �	��
����
����� ��������������� ���
 IO1.O2

iff all classes in O1 are ��� �� �!#"%$ &(')� ��*�!��+$ *,� *
-�$. to classes in O2,
with respect to IO1.O2.

Definition 14: An ontology O1 is /10�2�354 6(7)8 9�2�:�;<4 2,8 2
=�4>0 to ontology
O2, with respect to the ?5@�A�B CED�F�C<@,?�G�H @�I�JLK�@�M�M1B N#O IO1.O2 iff some
classes in O1 are PRQ<S�T5U V(W)X Y�S�Z�[+U\S
X S
]�U\Q to classes in O2, with
respect to IO1.O2.

Definition 15: An ontology O1 is ^`_�_ba�c�d,e f	^�g\h#i jlk)g am^�n�o+i ^,g ^
p�i h to
ontology O2, with respect to the q5r�s<t\u�v#w�u�r
q�x�y r�z>{}|~r`����t ��� IO1.O2
iff some classes in O1 are �`���b�����
� ���
�\�#� �(��� �������<� �,� �
���\� to classes in
O2, with respect to IO1.O2 and O1 is not �������#� �(�)� �������<� �
�\�
��� � to O2.

Readers acquainted with [8] will notice that our definition of �< ,¡�¢ £�¤
¥ ��¦
§ and ¨ ©�ª<«,¬>¨ ­<®,¯ ontologies do not demand the two
ontologies to be expressed using the same language. The reason
for this option is twofold: first, we assume that all ontologies are
expressed using (or have been converted to) O3F. Second, we
consider this to be too restrictive a constraint: in our view, it
suffices that two ontologies (initially expressed using different
frameworks) map to °�±
²
³ ´<µ
¶>°<·
¸ or ¹ º
»<¼
½¾¹ ¿<À
Á ontologies in O3F.
Â1ÃÅÄÇÆÉÈÉÊÌËÉÈÎÍÐÏÒÑÔÓÕÑ×ÖØÑÚÙmÛ
This section shows some ontology examples in several well-know
ontology representation frameworks, namely Ontolingua and
DAML-OIL. The section also summarizes the limitations of these
frameworks and presents O3F as an alternative ontology
representation framework.

The example in section 2 (partial representation of the Restaurant
Ontology) is used here.

<daml : Ont ol ogy r df : about =" Rest aur ant Ont ol ogy" >
(…)
</ daml : Ont ol ogy>

<daml : Cl ass r df : I D=" Rest aur ant " / >

<daml : Dat at ypePr oper t y r df : I D=" maxPr i ce" >
 <r df s: domai n r df : r esour ce=" #Rest aur ant " / >
 <r df s: r ange r df : r esour ce=" #f l oat " / >
</ daml : Dat at ypePr oper t y> ÜÞÝ>ß�àlá�â�ã	äæåbç�á<èêé�ë%è)ì(â1í�îðïÉñRò)óðômñöõ	â�÷lá�â�ø`â�ù,è)ç5è�Ý\é�ùÇé�ëúè�ì(â

õðâ�øûè�ç�àlá�ç�ù,è%óæù,è)é�ü>é�ß5ý
Figure 3 presents part of the Restaurant Ontology represented in
DAML-OIL. The þ ÿ ��� �����	��
�� class of the ��
���������������������� �� ��"!$#
ontology includes a property named %'&$(�)+*�, -$. . Figure 4 presents
the same example in Ontolingua.

(def r el at i on Rest aur ant
 (Subcl ass- Of Rest aur ant I ndi v i dual - Thi ng)
 (Cl ass Rest aur ant)

 (Ar i t y Rest aur ant 1))

(def r el at i on Maxpr i ce

 (…)
 (Range Maxpr i ce Real - Number)
 (Domai n Maxpr i ce Rest aur ant)

 (…)) /+0�1�243�5�687:9+;�3�<>=�?:<A@B5DCFE�<A=�G�0�EB1�2B;IH85�J43�5�K�5$E�<L;�<A0�=�EM=�?:<A@B5
HN5$KO<L;�243�;�E�<:CME�<A=�G�=�1�P

The representation of the method Q�R�R�S�T�U�V�W X in these ontology
representation frameworks is impossible, since Ontolingua can
only represent functions, general predicates and axioms, while
DAML+OIL is only able to represent classes and properties.

To deal with this shortage, we have defined an extension to
DAML+OIL which allows the definition of methods and their

association with classes. This extension can be found in [15].
Using this extension, this method would be defined as:
<daml : Cl ass r df : about =" #Rest aur ant " >
 <met : hasMet hod>
 <met : Met hod r df : I D=" BookTabl e" >
 <met : i nput Ar gument s>
 <met : Ar gument Li st >
 <r df : l i >
 <met : Met hodAr gument >
 <met : ar gument Name>t abl e
 </ met : ar gument Name>
 <met : ar gument Type r esour ce=" #t ext " / >
 </ met : Met hodAr gument >
 </ r df : l i >
 <r df : l i >
 <met : Met hodAr gument >
 <met : ar gument Name>booker
 </ met : ar gument Name>
 <met : ar gument Type r esour ce=" #t ext " / >
 </ met : Met hodAr gument >
 </ r df : l i >
 </ met : Ar gument Li st >
 </ met : i nput Ar gument s>
 </ met : Met hod>
 </ met : hasMet hod>
</ daml : Cl ass> Y+Z�[�\4]�^D_8`ba'c'dfe�`Ag8h�eji8^�k4]�^�l�^�m�nAo�nLZ�p�mqp�rbnLsB^�dt^�nAsBp�nAu

vDp�p�w�xyo�zB{�^

(i nst ance (Met hod : name BookTabl e) Met hod)

(i nst ance (Associ at i on : name Met hodOf Cl ass
 : ar gument s (set
 (AAr g : c l ass Met hod : key name
 : obj ect BookTabl e)
 (AAr g : c l ass Cl ass : key name
 : obj ect Rest aur ant))
 : at t r i but es (set)) Associ at i on)

(i nst ance (Associ at i on : name Ret ur nType
 : ar gument s (set
 (AAr g : c l ass Met hod : key name
 : obj ect BookTabl e)
 (AAr g : c l ass Dat aType : key name
 : obj ect St r i ng)
 : at t r i but es (set)) Associ at i on)

(i nst ance (Ar gument : name t abl e) Ar gument)

(i nst ance (Associ at i on : name TypeOf Ar gument
 : ar gument s (set
 (AAr g : c l ass Ar gument : key name
 : obj ect t abl e)
 (AAr g : c l ass Dat aType : key name
 : obj ect st r i ng))) Associ at i on)

(i nst ance (Associ at i on : name Ar gOf Met hod
 : ar gument s (set
 (AAr g : c l ass Ar gument : key name
 : obj ect t abl e)
 (AAr g : c l ass Met hod : key name
 : obj ect BookTabl e))) Associ at i on) |~}����4���y���>�8�����N�$�4�����������L���������M���b�A�B�y�t�����B���F�I�������y���B���
The description of argument �������" �¡ is omitted in Figure 6 but it
would be defined similarly to argument ¢ £�¤�¥ ¦ .
§�¨ª©f«f¬­©�®°¯­±�²>«³¬­±µ´f¬f¶¸·q¯­¹º¯f»­¼¾½¿«³»fÀ
The paper describes an object-oriented ontology representation
framework allowing the representation of the most common OO
concepts, including classes, properties, methods and their
relationships. The main contribution of the paper is the declarative
description of action methods, that is, methods whose execution

changes the state of the world. The paper shows that the presented
proposal improves the autonomy of agents in agent networks
because it provides a stronger semantic content than related
ontology representation frameworks (e.g., DAML, Ontolingua,
and UML). We have also shown that the proposed approach can
be used for representing ontologies originally written in
DAML+OIL, Ontolingua and UML.

Future steps along this work are the development of software tools
that allow the automatic mapping of different surface
representation methods into the proposed framework, and using
the action method description for automatically generate agent
programs in the Pagoda of Creation [12][11].

ÁyÂÄÃ­Å�ÆÈÇ­ÉfÊÌËtÍqÎ­ÏÑÐÒÍºÇ­ÓjÔ
The research described in this paper is partly by UNIDE/ISCTE
and partly supported by the EC project Agentcities.RTD,
reference IST-2000-28385. The opinions expressed in this paper
are those of the authors and are not necessarily those of the
Agentcities.RTD partners. The authors are also indebted to all
other members of the Agentcities ADETTI team.

ÕyÖÄ×­ØºÙ°Øq×­ØºÚ­ÛfØ°Ü
[1] Botelho, L.B.; Antunes, N.; Mohmed, E.; and Ramos, P.

“Greeks and Trojans Together” . In Proc. of the AAMAS2002
Workshop “Ontologies in Agent Systems”. 2002

[2] Botelho, L.B.; Mendes, H.; and Marinheiro, R. “Send Fredo
off to do this, send Fredo off to do that” . Submitted to the
Second International Joint Conference on Autonomous
Agents and Multiagent Systems. 2003

[3] Chaudhri, V., Farquhar A., Fikes R., Karp P., Rice J.
1998;“Open Knowledge Base Connectivity” . http://www-ksl-
svc.stanford.edu:5915/doc/release/okbc/okbc-
spec/index.html

[4] Dale, J.; and Ceccaroni, L. “Pizza and a Movie: A Case
Study in Advanced Web Services” . In Proc. of the
AAMAS2002 Workshop “Agentcities: Challenges in Open
Agent Environments” . 2002

[5] DARPA Agent Markup Language. “DAML-S 0.7 Draft
Release”. 2002 http://www.daml.org/services/daml-s/0.7/

[6] DARPA Agent Markup Language. “Reference description of
the DAML+OIL (March 2001) ontology markup language”.
2001

[7] Farquhar, A.; Fikes, R.; and Rice, J. “Tools for Assembling
Modular Ontologies in Ontolingua”. In Proc. of the
Fourteenth National Conference on Artificial Intelligence
(AAAI’97). 1997

[8] Foundation for Intelligent Physical Agents 2000; “FIPA
Ontology Service Specification” .
http://www.fipa.org/specs/fipa00086/

[9] Foundation for Intelligent Physical Agents. “FIPA SL
Content Language Specification” . 2002

[10] Kietz, J-U., Maedche, A.; and Volz, R. “A Method for Semi-
Automatic Ontology Acquisition from a Corporate Intranet” .
In Proc. of the EKAW'2000 Workshop "Ontologies and
Texts". 2000

[11] Lopes, A.; Gaio, S.; and Botelho, L.M. “From DAML-S to
Executable Code”. In Proceedings of the AAMAS2002
Workshop “Challenges in Open Agent Environments” . 2002

[12] Lopes, A.; Gaio, S.; and Botelho, L.M. “Personal Access to a
Worldwide Agent Network” AAMAS2002. 2002.

[13] McCarthy, J.; and Hayes, P.J. “Some Philosophical Problems
from the Standpoint of Artificial Intelligence”. In Michie, D.
(ed), ÝßÞ�à�áBâ ã�äæåOã�ç�ä$è�èéâ êbä�ã�à$äDë , American Elsevier, New York,
NY, 1969.

[14] Mena, E.; Kashyap, V.; Illarramendi A.; and Sheth, A.
“Managing Multiple Information Sources through
Ontologies: Relationship between Vocabulary Heterogeneity
and Loss of Information” . In Proc. of Knowledge
Representation Meets Databases (KRDB'96) at ECAI'96
conference, pp. 50-52. 1996

[15] Mota, L. “Extension to DAML+OIL: representation of
methods”. http://agentcities.adetti-
linha4.com/ontologies/method . 2002

[16] Willmott, S.; Dale, J.; Burg, B.; Charlton, P; and O'Brien, P.
2001. “Agentcities: a worldwide open agent network” . ì~íbî�ï�ðéñ�ò ï�ó+ôõî�öy÷�ø�ù�úüû�ý�þOû�ÿ

.

